forked from mindspore-Ecosystem/mindspore
!11719 [MSLITE][DEVELOP] fix bug of npu op: Rsqrt, Scale and Arithmetic
From: @yangruoqi713 Reviewed-by: @zhang_xue_tong,@zhanghaibo5 Signed-off-by: @zhang_xue_tong
This commit is contained in:
commit
c8fa7798f1
|
@ -45,13 +45,10 @@ using mindspore::schema::PrimitiveType_Sub;
|
|||
namespace mindspore::kernel {
|
||||
int ArithmeticNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter) {
|
||||
if (primitive_->Type() == PrimitiveType_Mul || primitive_->Type() == PrimitiveType_Div ||
|
||||
primitive_->Type() == PrimitiveType_Add || primitive_->Type() == PrimitiveType_Sub) {
|
||||
if (inputs[0]->shape() != inputs[1]->shape()) {
|
||||
MS_LOG(WARNING) << name_ << " for the two inputs, the corresponding dimensions must have the same value."
|
||||
<< " shape 1 is:" << inputs[0]->shape() << " shape 2 is:" << inputs[1]->shape();
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (inputs[0]->shape() != inputs[1]->shape()) {
|
||||
MS_LOG(WARNING) << name_ << " for the two inputs, the corresponding dimensions must have the same value."
|
||||
<< " shape 1 is:" << inputs[0]->shape() << " shape 2 is:" << inputs[1]->shape();
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -68,6 +65,26 @@ ge::Operator *CreateOperator(const std::vector<ge::Operator *> &npu_inputs, cons
|
|||
return op;
|
||||
}
|
||||
|
||||
int ArithmeticNPUKernel::SetActivation() {
|
||||
if (activation_type_ != ActivationType_NO_ACTIVATION) {
|
||||
act_ = new (std::nothrow) hiai::op::Activation(name_ + "_act");
|
||||
if (act_ == nullptr) {
|
||||
MS_LOG(ERROR) << "New activation npu operator for op " << name_ << " failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
act_->set_input_x(*op_);
|
||||
if (activation_type_ == ActivationType_RELU) {
|
||||
act_->set_attr_mode(1);
|
||||
} else if (activation_type_ == ActivationType_RELU6) {
|
||||
act_->set_attr_mode(14);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Unsupported activation type for op " << name_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ArithmeticNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs,
|
||||
const std::vector<ge::Operator *> &npu_inputs) {
|
||||
|
@ -100,6 +117,9 @@ int ArithmeticNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs,
|
|||
case PrimitiveType_Maximum:
|
||||
op = CreateOperator<hiai::op::Maximum>(npu_inputs, name_);
|
||||
break;
|
||||
case PrimitiveType_Minimum:
|
||||
op = CreateOperator<hiai::op::Minimum>(npu_inputs, name_);
|
||||
break;
|
||||
case PrimitiveType_SquaredDifference:
|
||||
op = CreateOperator<hiai::op::SquaredDifference>(npu_inputs, name_);
|
||||
break;
|
||||
|
@ -132,21 +152,10 @@ int ArithmeticNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs,
|
|||
}
|
||||
op_ = op;
|
||||
|
||||
if (activation_type_ != ActivationType_NO_ACTIVATION) {
|
||||
act_ = new (std::nothrow) hiai::op::Activation(name_ + "_act");
|
||||
if (act_ == nullptr) {
|
||||
MS_LOG(ERROR) << "New activation npu operator for op " << name_ << " failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
act_->set_input_x(*op_);
|
||||
if (activation_type_ == ActivationType_RELU) {
|
||||
act_->set_attr_mode(1);
|
||||
} else if (activation_type_ == ActivationType_RELU6) {
|
||||
act_->set_attr_mode(14);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Unsupport activation type for op " << name_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto ret = SetActivation();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Arithmetic npu op set activation failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -39,6 +39,7 @@ class ArithmeticNPUKernel : public NPUKernel {
|
|||
ge::Operator *GetNPUOp() override;
|
||||
|
||||
private:
|
||||
int SetActivation();
|
||||
int activation_type_;
|
||||
ge::Operator *op_ = nullptr;
|
||||
hiai::op::Activation *act_ = nullptr;
|
||||
|
|
|
@ -68,6 +68,9 @@ int ArithmeticSelfNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inp
|
|||
case PrimitiveType_Sqrt:
|
||||
op = CreateOperator<hiai::op::Sqrt>(npu_inputs[0], name_);
|
||||
break;
|
||||
case PrimitiveType_Rsqrt:
|
||||
op = CreateOperator<hiai::op::Rsqrt>(npu_inputs[0], name_);
|
||||
break;
|
||||
case PrimitiveType_Sin:
|
||||
op = CreateOperator<hiai::op::Sin>(npu_inputs[0], name_);
|
||||
break;
|
||||
|
|
|
@ -53,7 +53,7 @@ int InstanceNormNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &input
|
|||
ge::TensorDesc gamma_tensor_desc(lite::ConverterToNPUShape({1, gamma_shape[0], 1, 1}), ge::FORMAT_NCHW,
|
||||
lite::ConverterToNPUDataType(inputs[1]->data_type()));
|
||||
gamma_tensor->SetTensorDesc(gamma_tensor_desc);
|
||||
gamma_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs.data()), inputs[1]->Size());
|
||||
gamma_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs[1]->data_c()), inputs[1]->Size());
|
||||
op_->set_input_gamma(*gamma);
|
||||
|
||||
auto beta = new (std::nothrow) hiai::op::Const(name_ + "_beta");
|
||||
|
@ -61,16 +61,16 @@ int InstanceNormNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &input
|
|||
MS_LOG(ERROR) << "New beta const failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto beta_shape = inputs[1]->shape();
|
||||
auto beta_shape = inputs[2]->shape();
|
||||
std::shared_ptr<ge::Tensor> beta_tensor = std::shared_ptr<ge::Tensor>(new (std::nothrow) ge::Tensor());
|
||||
if (beta_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new beta_tensor failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
ge::TensorDesc beta_tensor_desc(lite::ConverterToNPUShape({1, beta_shape[0], 1, 1}), ge::FORMAT_NCHW,
|
||||
lite::ConverterToNPUDataType(inputs[1]->data_type()));
|
||||
lite::ConverterToNPUDataType(inputs[2]->data_type()));
|
||||
beta_tensor->SetTensorDesc(beta_tensor_desc);
|
||||
beta_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs.data()), inputs[1]->Size());
|
||||
beta_tensor->SetData(reinterpret_cast<const uint8_t *>(inputs[2]->data_c()), inputs[2]->Size());
|
||||
op_->set_input_beta(*beta);
|
||||
op_->set_attr_epsilon(instance_norm_param_->epsilon_);
|
||||
return RET_OK;
|
||||
|
|
|
@ -24,6 +24,13 @@ using mindspore::schema::PrimitiveType_Scale;
|
|||
namespace mindspore::kernel {
|
||||
int ScaleNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter) {
|
||||
if (scale_parameter_->axis_ < 0) {
|
||||
scale_parameter_->axis_ = scale_parameter_->axis_ + inputs.size();
|
||||
}
|
||||
if (scale_parameter_->axis_ != 1) {
|
||||
MS_LOG(ERROR) << "Npu scale axis attr only support 1, now is " << scale_parameter_->axis_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue