set fullname for reshape after reshape-elimination

This commit is contained in:
Xiaoda Zhang 2020-11-28 12:16:51 +08:00
parent a146f982bc
commit c79e988b0d
2 changed files with 137 additions and 0 deletions

View File

@ -95,6 +95,7 @@ class TwoReshapeEliminater : public AnfVisitor {
if (fg != nullptr && x_ != nullptr && shape_ != nullptr) {
auto new_node = fg->NewCNode({NewValueNode(prim_), x_, shape_});
new_node->set_abstract(node->abstract());
new_node->set_fullname_with_scope(node->fullname_with_scope());
return new_node;
}
return nullptr;

View File

@ -0,0 +1,136 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell
import mindspore.nn as nn
from mindspore.ops import operations as P, functional as F
from mindspore.common.initializer import initializer
import mindspore.common.dtype as mstype
from mindspore.common.api import _executor
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class LayerNorm(nn.Cell):
def __init__(self, normalized_shape, eps=1e-5):
super(LayerNorm, self).__init__()
self.gamma = Parameter(initializer('ones', normalized_shape), name="gamma")
self.beta = Parameter(initializer('zeros', normalized_shape), name="beta")
self.mean = P.ReduceMean(keep_dims=True)
self.eps = eps
self.sub = P.Sub()
self.add = P.TensorAdd()
self.mul = P.Mul()
self.div = P.RealDiv()
self.reshape = P.Reshape()
self.shape = P.Shape()
def construct(self, x):
x_origin_shape = self.shape(x)
x_target_shape = x_origin_shape[:-1]
x_shape = x_origin_shape + (1,)
x = self.reshape(x, x_shape)
x = self.reshape(x, x_target_shape)
mean = self.mean(x, -1)
variance = self.mean(F.square(self.sub(x, mean)))
output = self.div(self.sub(x, mean), F.sqrt(self.add(variance, self.eps)))
rescaled_output = self.add(self.mul(output, self.gamma), self.beta)
output_shape = self.shape(rescaled_output) + (1,)
rescaled_output = self.reshape(rescaled_output, output_shape)
return rescaled_output
class SubNet(Cell):
def __init__(self, index):
super().__init__()
self.relu = P.ReLU()
self.layernorm1 = LayerNorm((128,)).to_float(mstype.float32)
def construct(self, x):
x = self.layernorm1(x)
out = self.relu(x)
return out
class Net(Cell):
def __init__(self, mul_weight, num_layers, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.neg = P.Neg().shard(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
self.num_layers = num_layers
self.layers = nn.CellList()
for i in range(num_layers):
self.layers.append(SubNet(i))
def construct(self, x):
for i in range(self.num_layers):
x = self.layers[i](x)
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
class Full(Cell):
def __init__(self, mul_weight, num_layers, strategy1=None, strategy2=None):
super().__init__()
self.network = Net(mul_weight, num_layers, strategy1, strategy2)
self.relu = P.ReLU()
def construct(self, x):
out = self.network(x)
out = self.relu(out)
return out
_x = Tensor(np.ones([512, 128, 1]), dtype=ms.float32)
_b = Tensor(np.ones([32]), dtype=ms.int32)
_w1 = Tensor(np.ones([512, 128, 1]), dtype=ms.float32)
def test_auto_parallel():
context.set_context(save_graphs=True)
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Full(_w1, 3)
net.set_auto_parallel()
net.set_train()
_executor.compile(net, _x, phase='train')
num_ops = _executor._get_num_parallel_ops(net)
expected_num = 16
assert num_ops == expected_num