forked from mindspore-Ecosystem/mindspore
!48801 add_ops_std_var_and_mean
Merge pull request !48801 from yide12/tensor_std_master
This commit is contained in:
commit
c2a1ad5b7a
|
@ -329,6 +329,9 @@ Reduction函数
|
|||
mindspore.ops.norm
|
||||
mindspore.ops.prod
|
||||
mindspore.ops.std
|
||||
mindspore.ops.std_mean
|
||||
mindspore.ops.var
|
||||
mindspore.ops.var_mean
|
||||
|
||||
比较函数
|
||||
^^^^^^^^^^^^^
|
||||
|
|
|
@ -1,25 +1,28 @@
|
|||
mindspore.ops.std
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.std(input_x, axis=(), unbiased=True, keep_dims=False)
|
||||
.. py:function:: mindspore.ops.std(input, axis=None, ddof=0, keepdims=False)
|
||||
|
||||
默认情况下,输出Tensor各维度上的标准差与均值,也可以对指定维度求标准差与均值。如果 `axis` 是维度列表,则计算对应维度的标准差与均值。
|
||||
默认情况下,输出Tensor各维度上的标准差,也可以对指定维度求标准差。如果 `axis` 是维度列表,则计算对应维度的标准差。
|
||||
|
||||
.. note::
|
||||
如果 `ddof` 是0、1、True或False,支持的平台只有 `Ascend` 和 `CPU` 。其他情况下,支持平台是 `Ascend` 、 `GPU` 和 `CPU` 。
|
||||
|
||||
参数:
|
||||
- **input_x** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 要减少的维度。默认值: (),缩小所有维度。只允许常量值。假设 `input_x` 的秩为r,取值范围[-r,r)。
|
||||
- **unbiased** (bool) - 如果为True,使用Bessel校正。否则不使用Bessel校正。默认值:True。
|
||||
- **keep_dims** (bool) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
- **input** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)],可选) - 要减少的维度。只允许常量值。假设 `input` 的秩为r,取值范围[-r,r)。默认值: None,缩小所有维度。
|
||||
- **ddof** (Union[int, bool],可选) - δ自由度。如果为整数,计算中使用的除数是 :math:`N - ddof` ,其中 :math:`N` 表示元素的数量。如果为True,使用Bessel校正。如果是False,使用偏置估计来计算方差。默认值:0。
|
||||
- **keepdims** (bool,可选) - 是否保留输出Tensor的维度。如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tuple,含有两个Tensor的tuple,分别为标准差与均值.
|
||||
假设输入 `input_x` 的shape为 :math:`(x_0, x_1, ..., x_R)` :
|
||||
- 如果 `axis` 为(),且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor `input_x` 中所有元素的标准差。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keep_dims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keep_dims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
Tensor,标准差。
|
||||
假设输入 `input` 的shape为 :math:`(x_0, x_1, ..., x_R)` :
|
||||
- 如果 `axis` 为(),且 `keepdims` 为False,则输出一个零维Tensor,表示输入Tensor `input` 中所有元素的标准差。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keepdims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keepdims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input_x` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:int、tuple或list。
|
||||
- **TypeError** - `keep_dims` 不是bool类型。
|
||||
- **TypeError** - `input` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:None、int、tuple或list。
|
||||
- **TypeError** - `keepdims` 不是bool类型。
|
||||
- **ValueError** - `axis` 超出范围。
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
mindspore.ops.std_mean
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.std_mean(input, axis=None, ddof=0, keepdims=False)
|
||||
|
||||
默认情况下,输出Tensor各维度上的标准差和均值,也可以对指定维度求标准差和均值。如果 `axis` 是维度列表,则计算对应维度的标准差和均值。
|
||||
|
||||
.. note::
|
||||
如果 `ddof` 是0、1、True或False,支持的平台只有 `Ascend` 和 `CPU` 。其他情况下,支持平台是 `Ascend` 、 `GPU` 和 `CPU` 。
|
||||
|
||||
参数:
|
||||
- **input** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)],可选) - 要减少的维度。只允许常量值。假设 `input` 的秩为r,取值范围[-r,r)。默认值: None,缩小所有维度。
|
||||
- **ddof** (Union[int, bool],可选) - δ自由度。如果为整数,计算中使用的除数是 :math:`N - ddof` ,其中 :math:`N` 表示元素的数量。如果为True,使用Bessel校正。如果是False,使用偏置估计来计算方差。默认值:0。
|
||||
- **keepdims** (bool,可选) - 是否保留输出Tensor的维度。如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
包含标准差和均值的tuple。
|
||||
假设输入 `input` 的shape为 :math:`(x_0, x_1, ..., x_R)` :
|
||||
- 如果 `axis` 为(),且 `keepdims` 为False,则输出一个零维Tensor,表示输入Tensor `input` 中所有元素的标准差。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keepdims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keepdims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:None、int、tuple或list。
|
||||
- **TypeError** - `keepdims` 不是bool类型。
|
||||
- **ValueError** - `axis` 超出范围。
|
|
@ -0,0 +1,28 @@
|
|||
mindspore.ops.var
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.var(input, axis=None, ddof=0, keepdims=False)
|
||||
|
||||
默认情况下,输出Tensor各维度上的方差,也可以对指定维度求方差。如果 `axis` 是维度列表,则计算对应维度的方差。
|
||||
|
||||
.. note::
|
||||
如果 `ddof` 是0、1、True或False,支持的平台只有 `Ascend` 和 `CPU` 。其他情况下,支持平台是 `Ascend` 、 `GPU` 和 `CPU` 。
|
||||
|
||||
参数:
|
||||
- **input** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)],可选) - 要减少的维度。只允许常量值。假设 `input` 的秩为r,取值范围[-r,r)。默认值: None,缩小所有维度。
|
||||
- **ddof** (Union[int, bool],可选) - δ自由度。如果为整数,计算中使用的除数是 :math:`N - ddof` ,其中 :math:`N` 表示元素的数量。如果为True,使用Bessel校正。如果是False,使用偏置估计来计算方差。默认值:0。
|
||||
- **keepdims** (bool,可选) - 是否保留输出Tensor的维度。如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor,方差。
|
||||
假设输入 `input` 的shape为 :math:`(x_0, x_1, ..., x_R)` :
|
||||
- 如果 `axis` 为(),且 `keepdims` 为False,则输出一个零维Tensor,表示输入Tensor `input` 中所有元素的方差。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keepdims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keepdims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:None、int、tuple或list。
|
||||
- **TypeError** - `keepdims` 不是bool类型。
|
||||
- **ValueError** - `axis` 超出范围。
|
|
@ -0,0 +1,28 @@
|
|||
mindspore.ops.var_mean
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.var_mean(input, axis=None, ddof=0, keepdims=False)
|
||||
|
||||
默认情况下,输出Tensor各维度上的方差和均值,也可以对指定维度求方差和均值。如果 `axis` 是维度列表,则计算对应维度的方差和均值。
|
||||
|
||||
.. note::
|
||||
如果 `ddof` 是0、1、True或False,支持的平台只有 `Ascend` 和 `CPU` 。其他情况下,支持平台是 `Ascend` 、 `GPU` 和 `CPU` 。
|
||||
|
||||
参数:
|
||||
- **input** (Tensor[Number]) - 输入Tensor,其数据类型为数值型。shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)],可选) - 要减少的维度。只允许常量值。假设 `input` 的秩为r,取值范围[-r,r)。默认值: None,缩小所有维度。
|
||||
- **ddof** (Union[int, bool],可选) - δ自由度。如果为整数,计算中使用的除数是 :math:`N - ddof` ,其中 :math:`N` 表示元素的数量。如果为True,使用Bessel校正。如果是False,使用偏置估计来计算方差。默认值:0。
|
||||
- **keepdims** (bool,可选) - 是否保留输出Tensor的维度。如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
包含方差和均值的tuple。
|
||||
假设输入 `input` 的shape为 :math:`(x_0, x_1, ..., x_R)` :
|
||||
- 如果 `axis` 为(),且 `keepdims` 为False,则输出一个零维Tensor,表示输入Tensor `input` 中所有元素的方差。
|
||||
- 如果 `axis` 为int,取值为1,并且 `keepdims` 为False,则输出的shape为 :math:`(x_0, x_2, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(1, 2),并且 `keepdims` 为False,则输出Tensor的shape为 :math:`(x_0, x_3, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:None、int、tuple或list。
|
||||
- **TypeError** - `keepdims` 不是bool类型。
|
||||
- **ValueError** - `axis` 超出范围。
|
|
@ -329,6 +329,9 @@ Reduction Functions
|
|||
mindspore.ops.norm
|
||||
mindspore.ops.prod
|
||||
mindspore.ops.std
|
||||
mindspore.ops.std_mean
|
||||
mindspore.ops.var
|
||||
mindspore.ops.var_mean
|
||||
|
||||
Comparison Functions
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
|
|
@ -225,6 +225,9 @@ from .math_func import (
|
|||
tensor_exp,
|
||||
einsum,
|
||||
view_as_real,
|
||||
var,
|
||||
var_mean,
|
||||
std_mean,
|
||||
exp,
|
||||
tensor_expm1,
|
||||
expm1,
|
||||
|
|
|
@ -26,7 +26,6 @@ from mindspore.ops import operations as P
|
|||
from mindspore.ops import composite as C
|
||||
from mindspore.ops.operations._inner_ops import Cummin, TileSize
|
||||
from mindspore.ops.operations.math_ops import STFT
|
||||
from mindspore.ops.operations.math_ops import ReduceStd
|
||||
from mindspore.ops.operations.math_ops import Logit
|
||||
from mindspore.ops.operations.math_ops import LuUnpack
|
||||
from mindspore.ops.operations.math_ops import Roll
|
||||
|
@ -1440,7 +1439,7 @@ def inplace_add(x, v, indices):
|
|||
return inplace_add_inner(x, v)
|
||||
|
||||
|
||||
def inplace_index_add(var, indices, updates, axis):
|
||||
def inplace_index_add(var, indices, updates, axis): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Adds tensor `updates` to specified axis and indices of tensor `var`. The axis should be in [0, len(var.dim) - 1],
|
||||
and indices should be in [0, the size of `var` - 1] at the axis dimension.
|
||||
|
@ -4652,57 +4651,262 @@ def logaddexp2(x1, x2):
|
|||
return log_op(add_exp) / log_op(tensor_2)
|
||||
|
||||
|
||||
def std(input_x, axis=(), unbiased=True, keep_dims=False):
|
||||
"""
|
||||
Returns the standard-deviation and mean of each row of the input tensor by default,
|
||||
or it can calculate them in specified dimension `axis`.
|
||||
If `axis` is a list of dimensions, reduce over all of them.
|
||||
@constexpr
|
||||
def _check_and_canonicalize_axes(axes, ndim):
|
||||
"""Check whether the types and values of input axes are valid."""
|
||||
return validator.check_and_canonicalize_axes(axes, ndim)
|
||||
|
||||
|
||||
def _check_var_std_input(input, ddof, keepdims, axis, cls_name):
|
||||
if not isinstance(input, Tensor):
|
||||
raise TypeError(f"For {cls_name}, input should be Tensor, but got {type(input)}")
|
||||
_check_attr_dtype("ddof", ddof, [int, bool], cls_name)
|
||||
_check_attr_dtype("keepdims", keepdims, [bool], cls_name)
|
||||
if axis is None:
|
||||
axis = ()
|
||||
else:
|
||||
axis = _check_and_canonicalize_axes(axis, input.ndim)
|
||||
return axis
|
||||
|
||||
|
||||
def var(input, axis=None, ddof=0, keepdims=False): # pylint: disable=redefined-outer-name
|
||||
r"""
|
||||
Returns the variance of each row of the input Tensor by default, or it can calculate them
|
||||
in specified dimension `axis`. If `axis` is a list of dimensions, reduce over all of them.
|
||||
|
||||
Note:
|
||||
If ddof is 0, 1, True or Flase, the supported device is only Ascend and CPU. In other cases,
|
||||
the supported device is Ascend, GPU and CPU.
|
||||
|
||||
Args:
|
||||
input_x (Tensor[Number]): Input tensor with a dtype of number.Number, its shape should be :math:`(N, *)`
|
||||
where :math:`*` means any number of additional dims, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed.
|
||||
Must be in the range [-rank(`input_x`), rank(`input_x`)).
|
||||
unbiased (bool): Whether to use Bessel’s correction.
|
||||
If true, will use the Bessel correction unbiased estimation.
|
||||
If false, will through the biased estimation to calculate the standard deviation.
|
||||
keep_dims (bool): Whether the output tensor has dim retained or not.
|
||||
If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions.
|
||||
input (Tensor[Number]): Input Tensor with a dtype of number.Number, its shape should be :math:`(N, *)`
|
||||
where :math:`*` means any number of additional dims, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce. Only constant value is allowed.
|
||||
Must be in the range [-rank(`input`), rank(`input`)). Default: None, reduce all dimensions.
|
||||
ddof (Union[int, bool], optional): Means Delta Degrees of Freedom.
|
||||
If ddof is an integer, the divisor used in calculations is :math:`N - ddof`,
|
||||
where :math:`N` represents the number of elements.
|
||||
If ddof is True, will use the Bessel correction unbiased estimation.
|
||||
If ddof is False, will through the biased estimation to calculate variance.
|
||||
Default: 0.
|
||||
keepdims (bool, optional): Whether the output Tensor has dim retained or not.
|
||||
If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
A tuple of 2 Tensors (output_std, output_mean) containing the standard deviation and mean.
|
||||
Suppose the shape of `input_x` is :math:`(x_0, x_1, ..., x_R)`:
|
||||
Tensor, the variance.
|
||||
Suppose the shape of `input` is :math:`(x_0, x_1, ..., x_R)`:
|
||||
|
||||
- If `axis` is () and `keep_dims` is set to False, returns a 0-D Tensor, indicating
|
||||
the standard deviation of all elements in `input_x`.
|
||||
- If `axis` is int 1 and `keep_dims` is set to False, then the returned Tensor
|
||||
- If `axis` is () and `keepdims` is set to False, returns a 0-D Tensor, indicating
|
||||
the standard deviation of all elements in `input`.
|
||||
- If `axis` is int 1 and `keepdims` is set to False, then the returned Tensor
|
||||
has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
- If `axis` is tuple(int) or list(int), e.g. (1, 2) and `keep_dims` is set to False,
|
||||
- If `axis` is tuple(int) or list(int), e.g. (1, 2) and `keepdims` is set to False,
|
||||
then the returned Tensor has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If `axis` is not one of the following: int, tuple or list.
|
||||
TypeError: If `keep_dims` is not a bool.
|
||||
TypeError: If `input` is not a Tensor.
|
||||
TypeError: If `axis` is not one of the following: None, int, tuple or list.
|
||||
TypeError: If `keepdims` is not a bool.
|
||||
ValueError: If `axis` is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32))
|
||||
>>> output = ops.std(input_x, 1, True, False)
|
||||
>>> output_std, output_mean = output[0], output[1]
|
||||
>>> print(output_std)
|
||||
[1. 2.5166116]
|
||||
>>> input = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32))
|
||||
>>> output = ops.var(input, 1, True, False)
|
||||
>>> print(output)
|
||||
[1. 6.3333325]
|
||||
"""
|
||||
axis = _check_var_std_input(input, ddof, keepdims, axis, "var")
|
||||
output = var_mean(input, axis, ddof, keepdims)
|
||||
return output[0]
|
||||
|
||||
|
||||
def var_mean(input, axis=None, ddof=0, keepdims=False):
|
||||
r"""
|
||||
Returns the variance and mean of each row of the input Tensor by default,
|
||||
or it can calculate them in specified dimension `axis`.
|
||||
If `axis` is a list of dimensions, reduce over all of them.
|
||||
|
||||
Note:
|
||||
If ddof is 0, 1, True or Flase, the supported device is only Ascend and CPU. In other cases,
|
||||
the supported device is Ascend, GPU and CPU.
|
||||
|
||||
Args:
|
||||
input (Tensor[Number]): Input Tensor with a dtype of number.Number, its shape should be :math:`(N, *)`
|
||||
where :math:`*` means any number of additional dims, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce. Only constant value is allowed.
|
||||
Must be in the range [-rank(`input`), rank(`input`)). Default: None, reduce all dimensions.
|
||||
ddof (Union[int, bool], optional): Means Delta Degrees of Freedom.
|
||||
If ddof is an integer, the divisor used in calculations is :math:`N - ddof`,
|
||||
where :math:`N` represents the number of elements.
|
||||
If ddof is True, will use the Bessel correction unbiased estimation.
|
||||
If ddof is False, will through the biased estimation to calculate the variance and mean.
|
||||
Default: 0.
|
||||
keepdims (bool, optional): Whether the output Tensor has dim retained or not.
|
||||
If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
A tuple containing the variance and mean.
|
||||
Suppose the shape of `input` is :math:`(x_0, x_1, ..., x_R)`:
|
||||
|
||||
- If `axis` is () and `keepdims` is set to False, returns a 0-D Tensor, indicating
|
||||
the standard deviation of all elements in `input`.
|
||||
- If `axis` is int 1 and `keepdims` is set to False, then the returned Tensor
|
||||
has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
- If `axis` is tuple(int) or list(int), e.g. (1, 2) and `keepdims` is set to False,
|
||||
then the returned Tensor has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input` is not a Tensor.
|
||||
TypeError: If `axis` is not one of the following: None, int, tuple or list.
|
||||
TypeError: If `keepdims` is not a bool.
|
||||
ValueError: If `axis` is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32))
|
||||
>>> output_var, output_mean = ops.var_mean(input, 1, True, False)
|
||||
>>> print(output_var)
|
||||
[1. 6.3333325]
|
||||
>>> print(output_mean)
|
||||
[2. 1.3333334]
|
||||
"""
|
||||
reduce_std_op = ReduceStd(axis=axis, unbiased=unbiased, keep_dims=keep_dims)
|
||||
output = reduce_std_op(input_x)
|
||||
return output
|
||||
axis = _check_var_std_input(input, ddof, keepdims, axis, "var_mean")
|
||||
if ddof in (0, 1):
|
||||
output = _get_cache_prim(P.ReduceStd)(axis=axis, unbiased=bool(ddof), keep_dims=keepdims)(input)
|
||||
return _get_cache_prim(P.Pow)()(output[0], 2), output[1]
|
||||
x_mean = mean(input, axis, True)
|
||||
x_sub = _get_cache_prim(P.Sub)()(input, x_mean)
|
||||
x_pow = _get_cache_prim(P.Pow)()(x_sub, 2)
|
||||
x_sum = sum(x_pow, axis, keepdims)
|
||||
nums = 1
|
||||
if axis == ():
|
||||
nums = input.size
|
||||
else:
|
||||
for ax in axis:
|
||||
nums *= input.shape[ax]
|
||||
return true_divide(x_sum, nums - ddof), x_mean
|
||||
|
||||
|
||||
def std(input, axis=None, ddof=0, keepdims=False):
|
||||
r"""
|
||||
Returns the standard-deviation of each row of the input Tensor by default, or it can calculate them
|
||||
in specified dimension `axis`. If `axis` is a list of dimensions, reduce over all of them.
|
||||
|
||||
Note:
|
||||
If ddof is 0, 1, True or Flase, the supported device is only Ascend and CPU. In other cases,
|
||||
the supported device is Ascend, GPU and CPU.
|
||||
|
||||
Args:
|
||||
input (Tensor[Number]): Input Tensor with a dtype of number.Number, its shape should be :math:`(N, *)`
|
||||
where :math:`*` means any number of additional dims, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce. Only constant value is allowed.
|
||||
Must be in the range [-rank(`input`), rank(`input`)). Default: None, reduce all dimensions.
|
||||
ddof (Union[int, bool], optional): Means Delta Degrees of Freedom.
|
||||
If ddof is an integer, the divisor used in calculations is :math:`N - ddof`,
|
||||
where :math:`N` represents the number of elements.
|
||||
If ddof is True, will use the Bessel correction unbiased estimation.
|
||||
If ddof is False, will through the biased estimation to calculate the standard deviation.
|
||||
Default: 0.
|
||||
keepdims (bool, optional): Whether the output Tensor has dim retained or not.
|
||||
If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, the standard deviation.
|
||||
Suppose the shape of `input` is :math:`(x_0, x_1, ..., x_R)`:
|
||||
|
||||
- If `axis` is () and `keepdims` is set to False, returns a 0-D Tensor, indicating
|
||||
the standard deviation of all elements in `input`.
|
||||
- If `axis` is int 1 and `keepdims` is set to False, then the returned Tensor
|
||||
has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
- If `axis` is tuple(int) or list(int), e.g. (1, 2) and `keepdims` is set to False,
|
||||
then the returned Tensor has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input` is not a Tensor.
|
||||
TypeError: If `axis` is not one of the following: None, int, tuple or list.
|
||||
TypeError: If `keepdims` is not a bool.
|
||||
ValueError: If `axis` is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32))
|
||||
>>> output = ops.std(input, 1, True, False)
|
||||
>>> print(output)
|
||||
[1. 2.5166113]
|
||||
"""
|
||||
axis = _check_var_std_input(input, ddof, keepdims, axis, "std")
|
||||
output = std_mean(input, axis, ddof, keepdims)
|
||||
return output[0]
|
||||
|
||||
|
||||
def std_mean(input, axis=None, ddof=0, keepdims=False):
|
||||
r"""
|
||||
Returns the standard-deviation and mean of each row of the input Tensor by default,
|
||||
or it can calculate them in specified dimension `axis`.
|
||||
If `axis` is a list of dimensions, reduce over all of them.
|
||||
|
||||
Note:
|
||||
If ddof is 0, 1, True or Flase, the supported device is only Ascend and CPU. In other cases,
|
||||
the supported device is Ascend, GPU and CPU.
|
||||
|
||||
Args:
|
||||
input (Tensor[Number]): Input Tensor with a dtype of number.Number, its shape should be :math:`(N, *)`
|
||||
where :math:`*` means any number of additional dims, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce. Only constant value is allowed.
|
||||
Must be in the range [-rank(`input`), rank(`input`)). Default: None, reduce all dimensions.
|
||||
ddof (Union[int, bool], optional): Means Delta Degrees of Freedom.
|
||||
If ddof is an integer, the divisor used in calculations is :math:`N - ddof`,
|
||||
where :math:`N` represents the number of elements.
|
||||
If ddof is True, will use the Bessel correction unbiased estimation.
|
||||
If ddof is False, will through the biased estimation to calculate the standard deviation and mean.
|
||||
Default: 0.
|
||||
keepdims (bool, optional): Whether the output Tensor has dim retained or not.
|
||||
If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
A tuple containing the standard deviation and mean.
|
||||
Suppose the shape of `input` is :math:`(x_0, x_1, ..., x_R)`:
|
||||
|
||||
- If `axis` is () and `keepdims` is set to False, returns a 0-D Tensor, indicating
|
||||
the standard deviation of all elements in `input`.
|
||||
- If `axis` is int 1 and `keepdims` is set to False, then the returned Tensor
|
||||
has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
- If `axis` is tuple(int) or list(int), e.g. (1, 2) and `keepdims` is set to False,
|
||||
then the returned Tensor has shape :math:`(x_0, x_2, ..., x_R)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input` is not a Tensor.
|
||||
TypeError: If `axis` is not one of the following: None, int, tuple or list.
|
||||
TypeError: If `keepdims` is not a bool.
|
||||
ValueError: If `axis` is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.array([[1, 2, 3], [-1, 1, 4]]).astype(np.float32))
|
||||
>>> output_std, output_mean = ops.std_mean(input, 1, True, False)
|
||||
>>> print(output_std)
|
||||
[1. 2.5166113]
|
||||
>>> print(output_mean)
|
||||
[2. 1.3333334]
|
||||
"""
|
||||
axis = _check_var_std_input(input, ddof, keepdims, axis, "std_mean")
|
||||
if ddof in (0, 1):
|
||||
return _get_cache_prim(P.ReduceStd)(axis=axis, unbiased=bool(ddof), keep_dims=keepdims)(input)
|
||||
output = var_mean(input, axis, ddof, keepdims)
|
||||
return _get_cache_prim(P.Pow)()(output[0], 0.5), output[1]
|
||||
|
||||
|
||||
def real(x):
|
||||
|
@ -9872,7 +10076,7 @@ def nansum(x, axis=None, keepdims=False, *, dtype=None):
|
|||
raise TypeError(f"For nansum, input must be Tensor, but got {type(x)}.")
|
||||
_check_repeat_in_axis(axis, x.ndim, "nansum")
|
||||
if x.is_complex():
|
||||
raise TypeError(f'For nansum, input are not supported complex type, but got {type(x)}.')
|
||||
raise TypeError(f'For nansum, input are not supported complex type, but got {x.dtype}.')
|
||||
if dtype is not None and dtype in mstype.complex_type:
|
||||
raise TypeError(f'For nansum, dtype not supported complex type, but got {dtype}.')
|
||||
if axis is None:
|
||||
|
@ -10311,6 +10515,9 @@ __all__ = [
|
|||
'atleast_3d',
|
||||
'view_as_real',
|
||||
'vstack',
|
||||
'var',
|
||||
'var_mean',
|
||||
'std_mean',
|
||||
'combinations',
|
||||
'dist',
|
||||
'copysign',
|
||||
|
|
|
@ -34,8 +34,8 @@ class NetReduceStd(nn.Cell):
|
|||
@jit
|
||||
def construct(self, indice):
|
||||
if self._axis is None:
|
||||
return F.std(indice, unbiased=False, keep_dims=self._keep_dims)
|
||||
return F.std(indice, axis=self._axis, unbiased=False, keep_dims=self._keep_dims)
|
||||
return F.std_mean(indice, ddof=False, keepdims=self._keep_dims)
|
||||
return F.std_mean(indice, axis=self._axis, ddof=False, keepdims=self._keep_dims)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -73,7 +73,7 @@ class ReduceStdDynamicShapeNet(nn.Cell):
|
|||
def construct(self, x):
|
||||
x_unique, _ = self.unique(x)
|
||||
x_unique = self.reshape(x_unique, (2, 5))
|
||||
return F.std(x_unique, unbiased=False, keep_dims=False)
|
||||
return F.std_mean(x_unique, ddof=False, keepdims=False)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.std(x, axis=0, ddof=True, keepdims=True)
|
||||
|
||||
|
||||
class NetGpu(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.std(x, axis=2, ddof=3, keepdims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_std(mode):
|
||||
"""
|
||||
Feature: ops.std
|
||||
Description: Verify the result of std on Ascend and CPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [[[2.12132025e+00, 7.07106769e-01, 7.07106769e-01, 9.19238853e+00],
|
||||
[6.36396122e+00, 6.36396122e+00, 9.19238853e+00, 1.41421354e+00],
|
||||
[6.36396122e+00, 2.12132025e+00, 7.77817440e+00, 1.13137083e+01]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_std_gpu(mode):
|
||||
"""
|
||||
Feature: ops.std
|
||||
Description: Verify the result of std on GPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = NetGpu()
|
||||
output = net(x)
|
||||
expect_output = [[[1.13468056e+01],
|
||||
[7.81024981e+00],
|
||||
[1.10453606e+01]],
|
||||
[[2.59807611e+00],
|
||||
[1.02347450e+01],
|
||||
[1.26787224e+01]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.std_mean(x, axis=0, ddof=True, keepdims=True)
|
||||
|
||||
|
||||
class NetGpu(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.std_mean(x, axis=2, ddof=3, keepdims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_std_mean(mode):
|
||||
"""
|
||||
Feature: ops.std_mean
|
||||
Description: Verify the result of std_mean on Ascend and CPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [[[2.12132025e+00, 7.07106769e-01, 7.07106769e-01, 9.19238853e+00],
|
||||
[6.36396122e+00, 6.36396122e+00, 9.19238853e+00, 1.41421354e+00],
|
||||
[6.36396122e+00, 2.12132025e+00, 7.77817440e+00, 1.13137083e+01]]]
|
||||
expect_output1 = [[[-5.50000000e+00, -6.50000000e+00, -4.50000000e+00, 1.50000000e+00],
|
||||
[-1.50000000e+00, -2.50000000e+00, -5.00000000e-01, -1.00000000e+00],
|
||||
[2.50000000e+00, -5.50000000e+00, 2.50000000e+00, 0.00000000e+00]]]
|
||||
assert np.allclose(output[0].asnumpy(), expect_output)
|
||||
assert np.allclose(output[1].asnumpy(), expect_output1)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_std_mean_gpu(mode):
|
||||
"""
|
||||
Feature: ops.std_mean
|
||||
Description: Verify the result of std_mean on GPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = NetGpu()
|
||||
output = net(x)
|
||||
expect_output = [[[1.13468056e+01],
|
||||
[7.81024981e+00],
|
||||
[1.10453606e+01]],
|
||||
[[2.59807611e+00],
|
||||
[1.02347450e+01],
|
||||
[1.26787224e+01]]]
|
||||
expect_output1 = [[[-1.75000000e+00],
|
||||
[-5.00000000e-01],
|
||||
[2.00000000e+00]],
|
||||
[[-5.75000000e+00],
|
||||
[-2.25000000e+00],
|
||||
[-2.25000000e+00]]]
|
||||
assert np.allclose(output[0].asnumpy(), expect_output)
|
||||
assert np.allclose(output[1].asnumpy(), expect_output1)
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.var(x, axis=0, ddof=True, keepdims=True)
|
||||
|
||||
|
||||
class NetGpu(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.var(x, axis=2, ddof=3, keepdims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_var(mode):
|
||||
"""
|
||||
Feature: ops.var
|
||||
Description: Verify the result of var on Ascend and CPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [[[4.49999952e+00, 4.99999970e-01, 4.99999970e-01, 8.45000076e+01],
|
||||
[4.05000038e+01, 4.05000038e+01, 8.45000076e+01, 1.99999988e+00],
|
||||
[4.05000038e+01, 4.49999952e+00, 6.04999962e+01, 1.27999992e+02]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_var_gpu(mode):
|
||||
"""
|
||||
Feature: ops.var
|
||||
Description: Verify the result of var on GPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = NetGpu()
|
||||
output = net(x)
|
||||
expect_output = [[[1.28750000e+02],
|
||||
[6.10000000e+01],
|
||||
[1.22000000e+02]],
|
||||
[[6.75000000e+00],
|
||||
[1.04750000e+02],
|
||||
[1.60750000e+02]]]
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.var_mean(x, axis=0, ddof=True, keepdims=True)
|
||||
|
||||
|
||||
class NetGpu(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.var_mean(x, axis=2, ddof=3, keepdims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_var_mean(mode):
|
||||
"""
|
||||
Feature: ops.var_mean
|
||||
Description: Verify the result of var_mean on Ascend and CPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = [[[4.49999952e+00, 4.99999970e-01, 4.99999970e-01, 8.45000076e+01],
|
||||
[4.05000038e+01, 4.05000038e+01, 8.45000076e+01, 1.99999988e+00],
|
||||
[4.05000038e+01, 4.49999952e+00, 6.04999962e+01, 1.27999992e+02]]]
|
||||
expect_output1 = [[[-5.50000000e+00, -6.50000000e+00, -4.50000000e+00, 1.50000000e+00],
|
||||
[-1.50000000e+00, -2.50000000e+00, -5.00000000e-01, -1.00000000e+00],
|
||||
[2.50000000e+00, -5.50000000e+00, 2.50000000e+00, 0.00000000e+00]]]
|
||||
assert np.allclose(output[0].asnumpy(), expect_output)
|
||||
assert np.allclose(output[1].asnumpy(), expect_output1)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_var_mean_gpu(mode):
|
||||
"""
|
||||
Feature: ops.var_mean
|
||||
Description: Verify the result of var_mean on GPU
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[[-4, -6, -5, 8],
|
||||
[3, 2, -7, 0],
|
||||
[7, -4, -3, 8]],
|
||||
[[-7, -7, -4, -5],
|
||||
[-6, -7, 6, -2],
|
||||
[-2, -7, 8, -8.]]])
|
||||
net = NetGpu()
|
||||
output = net(x)
|
||||
expect_output = [[[1.28750000e+02],
|
||||
[6.10000000e+01],
|
||||
[1.22000000e+02]],
|
||||
[[6.75000000e+00],
|
||||
[1.04750000e+02],
|
||||
[1.60750000e+02]]]
|
||||
expect_output1 = [[[-1.75000000e+00],
|
||||
[-5.00000000e-01],
|
||||
[2.00000000e+00]],
|
||||
[[-5.75000000e+00],
|
||||
[-2.25000000e+00],
|
||||
[-2.25000000e+00]]]
|
||||
assert np.allclose(output[0].asnumpy(), expect_output)
|
||||
assert np.allclose(output[1].asnumpy(), expect_output1)
|
Loading…
Reference in New Issue