forked from mindspore-Ecosystem/mindspore
!694 Refactor vm module for multigraph sink.
Merge pull request !694 from rick_sanchez/master
This commit is contained in:
commit
c1813671db
|
@ -800,45 +800,77 @@ void AscendSession::UpdateGraphOrder(GraphId to_graph_id) {
|
|||
}
|
||||
}
|
||||
|
||||
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const AnfNodePtr &node, size_t input_index) {
|
||||
auto output_num = AnfAlgo::GetOutputTensorNum(node);
|
||||
if (output_num > 1 && !AnfAlgo::CheckPrimitiveType(node, prim::kPrimTupleGetItem)) {
|
||||
return input_index + output_num;
|
||||
}
|
||||
auto &graph_inputs = graph->inputs();
|
||||
auto &valid_inputs = graph->ValidInputs();
|
||||
if (valid_inputs[input_index]) {
|
||||
SetChildGraphParameter(node, graph_inputs[input_index]);
|
||||
} else {
|
||||
MS_LOG(DEBUG) << "Invalid input arg: " << node->DebugString();
|
||||
}
|
||||
return ++input_index;
|
||||
}
|
||||
|
||||
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const ValuePtr &value, size_t input_index) {
|
||||
MS_EXCEPTION_IF_NULL(value);
|
||||
if (!value->isa<Tensor>()) {
|
||||
MS_LOG(EXCEPTION) << "Value Node should be a tensor, unexpected value: " << value->ToString();
|
||||
}
|
||||
auto &graph_inputs = graph->inputs();
|
||||
SetChildGraphParameter(value->cast<TensorPtr>(), graph_inputs[input_index]);
|
||||
return ++input_index;
|
||||
}
|
||||
|
||||
size_t AscendSession::SetChildGraphInput(const KernelGraphPtr &graph, const VectorRef &vec_args, size_t input_index) {
|
||||
auto index = input_index;
|
||||
for (auto &arg : vec_args) {
|
||||
if (utils::isa<AnfNodePtr>(arg)) {
|
||||
// arg is a anf node
|
||||
auto node = utils::cast<AnfNodePtr>(arg);
|
||||
index = SetChildGraphInput(graph, node, input_index);
|
||||
} else if (utils::isa<ValuePtr>(arg)) {
|
||||
// arg is a tensor
|
||||
auto value = utils::cast<ValuePtr>(arg);
|
||||
index = SetChildGraphInput(graph, value, input_index);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Unexpected arg type " << arg.ToString();
|
||||
}
|
||||
}
|
||||
return index;
|
||||
}
|
||||
|
||||
void AscendSession::SetChildGraphInput(GraphId g, const VectorRef &args) {
|
||||
MS_LOG(INFO) << "Set input of graph " << g;
|
||||
auto to_graph = GetGraph(g);
|
||||
MS_EXCEPTION_IF_NULL(to_graph);
|
||||
DumpGraphInputArgs(args);
|
||||
UpdateGraphOrder(g);
|
||||
std::vector<AnfNodePtr> graph_inputs = to_graph->inputs();
|
||||
auto valid_inputs = to_graph->ValidInputs();
|
||||
auto &graph_inputs = to_graph->inputs();
|
||||
auto real_args = GetRealArgs(to_graph, args);
|
||||
size_t input_index = 0;
|
||||
for (size_t i = 0; i < real_args.size(); i++) {
|
||||
if (input_index >= graph_inputs.size()) {
|
||||
MS_LOG(EXCEPTION) << "input_index " << input_index << " out of range size " << graph_inputs.size();
|
||||
}
|
||||
if (utils::isa<AnfNodePtr>(real_args[i])) {
|
||||
auto &real_arg = real_args[i];
|
||||
if (utils::isa<AnfNodePtr>(real_arg)) {
|
||||
// arg is a anf node
|
||||
auto real_arg = utils::cast<AnfNodePtr>(real_args[i]);
|
||||
auto real_arg_output_num = AnfAlgo::GetOutputTensorNum(real_arg);
|
||||
if (!AnfAlgo::CheckPrimitiveType(real_arg, prim::kPrimTupleGetItem) && real_arg_output_num > 1) {
|
||||
input_index += real_arg_output_num;
|
||||
continue;
|
||||
}
|
||||
if (valid_inputs[input_index]) {
|
||||
SetChildGraphParameter(real_arg, graph_inputs[input_index]);
|
||||
} else {
|
||||
MS_LOG(DEBUG) << "Invalid input arg" << real_arg->DebugString();
|
||||
}
|
||||
input_index++;
|
||||
} else if (utils::isa<ValuePtr>(args[i])) {
|
||||
auto value = utils::cast<ValuePtr>(args[i]);
|
||||
MS_EXCEPTION_IF_NULL(value);
|
||||
auto node = utils::cast<AnfNodePtr>(real_arg);
|
||||
input_index = SetChildGraphInput(to_graph, node, input_index);
|
||||
} else if (utils::isa<ValuePtr>(real_arg)) {
|
||||
// arg is a tensor
|
||||
if (!value->isa<Tensor>()) {
|
||||
MS_LOG(EXCEPTION) << "Value Node should be a tensor, unexpected value: " << value->ToString();
|
||||
}
|
||||
SetChildGraphParameter(value->cast<TensorPtr>(), graph_inputs[input_index]);
|
||||
input_index++;
|
||||
auto value = utils::cast<ValuePtr>(real_arg);
|
||||
input_index = SetChildGraphInput(to_graph, value, input_index);
|
||||
} else if (utils::isa<VectorRef>(real_arg)) {
|
||||
// arg is a VectorRef
|
||||
auto vec_args = utils::cast<VectorRef>(real_arg);
|
||||
input_index = SetChildGraphInput(to_graph, vec_args, input_index);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Unexpected arg type " << args[i].ToString();
|
||||
MS_LOG(EXCEPTION) << "Unexpected arg type " << real_arg.ToString();
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
|
|
|
@ -79,6 +79,10 @@ class AscendSession : public SessionBasic {
|
|||
void RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const;
|
||||
void RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
|
||||
|
||||
size_t SetChildGraphInput(const KernelGraphPtr &graph, const AnfNodePtr &node, size_t input_index);
|
||||
size_t SetChildGraphInput(const KernelGraphPtr &graph, const ValuePtr &value, size_t input_index);
|
||||
size_t SetChildGraphInput(const KernelGraphPtr &graph, const VectorRef &vec_args, size_t input_index);
|
||||
|
||||
// merge execution order list of child graphs
|
||||
void MergeGraphExecOrder();
|
||||
// insert assion op to sync data bettween different graphs
|
||||
|
|
|
@ -88,7 +88,7 @@ class KernelGraph : public FuncGraph {
|
|||
void set_executable(bool executable) { executable_ = executable; }
|
||||
// set invalid inputs for control sink
|
||||
std::vector<bool> *MutableValidInputs() { return &valid_inputs_; }
|
||||
std::vector<bool> ValidInputs() { return valid_inputs_; }
|
||||
const std::vector<bool> &ValidInputs() const { return valid_inputs_; }
|
||||
|
||||
private:
|
||||
// remove value node form graph
|
||||
|
|
|
@ -228,6 +228,8 @@ T cast(const BaseRef &handle) {
|
|||
|
||||
class VectorRef : public BaseRef {
|
||||
public:
|
||||
using value_type = BaseRef;
|
||||
|
||||
VectorRef() {}
|
||||
explicit VectorRef(const std::vector<BaseRef> &elements) : elements_(elements) {}
|
||||
VectorRef(const const_iterator &begin, const const_iterator &end) : elements_(begin, end) {}
|
||||
|
@ -251,6 +253,13 @@ class VectorRef : public BaseRef {
|
|||
return elements_[dim];
|
||||
}
|
||||
|
||||
BaseRef &operator[](const std::size_t &dim) {
|
||||
if (dim >= size()) {
|
||||
MS_LOG(EXCEPTION) << "Out of the size of the tuple.";
|
||||
}
|
||||
return elements_[dim];
|
||||
}
|
||||
|
||||
uint32_t type() const override { return tid(); }
|
||||
std::string ToString() const override;
|
||||
std::vector<BaseRef> &elements() { return elements_; }
|
||||
|
|
|
@ -143,6 +143,66 @@ void MsBackend::SetSwitchGraph() {
|
|||
}
|
||||
}
|
||||
|
||||
// convert node from formal parameter to actual parameter,
|
||||
// and actual parameter is graph user's formal parameter.
|
||||
// get top while graph's parameter in recall while.
|
||||
AnfNodePtr MsBackend::ConvertGraphInput(const FuncGraphPtr &func_graph, const AnfNodePtr &node) {
|
||||
std::unordered_map<AnfNodePtr, size_t> params_index;
|
||||
auto result = node;
|
||||
auto graph = result->func_graph();
|
||||
while (func_graph != graph) {
|
||||
auto iter = graph_user_inputs_.find(graph);
|
||||
if (iter == graph_user_inputs_.end()) {
|
||||
break;
|
||||
}
|
||||
|
||||
params_index.clear();
|
||||
auto ¶ms = graph->parameters();
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
params_index[params[i]] = i;
|
||||
}
|
||||
|
||||
graph = iter->second.first;
|
||||
auto &inputs = iter->second.second;
|
||||
result = inputs[params_index[result]];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void MsBackend::SetGraphUserInputs(const FuncGraphPtr &func_graph, const FuncGraphPtr &user,
|
||||
const AnfNodePtrList &inputs) {
|
||||
if (graph_user_inputs_.find(func_graph) != graph_user_inputs_.end()) {
|
||||
return;
|
||||
}
|
||||
graph_user_inputs_[func_graph] = {user, inputs};
|
||||
}
|
||||
|
||||
void MsBackend::RecallGraphInput(const FuncGraphPtr &func_graph, const VectorRef &args, const BaseRef &c) {
|
||||
std::unordered_map<AnfNodePtr, size_t> params_index;
|
||||
auto ¶ms = func_graph->parameters();
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
params_index[params[i]] = i;
|
||||
}
|
||||
|
||||
// recall all child graphs in this while
|
||||
auto &graph_inputs = graph_inputs_[c];
|
||||
for (auto &iter : graph_inputs) {
|
||||
auto &graph = iter.first;
|
||||
auto &old_args = iter.second;
|
||||
auto &result = graph_id_map_[graph];
|
||||
auto &inputs = result.inputs;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
auto input = ConvertGraphInput(func_graph, inputs[i]);
|
||||
auto it = params_index.find(input);
|
||||
if (it != params_index.end()) {
|
||||
old_args[i] = args[it->second];
|
||||
}
|
||||
}
|
||||
sess_->SetChildGraphInput(graph, old_args);
|
||||
}
|
||||
graph_inputs_.erase(c);
|
||||
}
|
||||
|
||||
// compile set input output
|
||||
VectorRef MsBackend::MsSimuRunGraph(const GraphId &g, const VectorRef &args) {
|
||||
MS_LOG(DEBUG) << "set graph input:" << g;
|
||||
|
@ -150,13 +210,20 @@ VectorRef MsBackend::MsSimuRunGraph(const GraphId &g, const VectorRef &args) {
|
|||
sess_->SetChildGraphInput(g, args);
|
||||
|
||||
if (is_switch_call_) {
|
||||
bool curr_cond = simu_cond_map_[curr_switch_].curr_cond;
|
||||
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond;
|
||||
if (0 == simu_cond_map_[curr_switch_].cond_graph_map.count(curr_cond)) {
|
||||
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond << ", " << g;
|
||||
simu_cond_map_[curr_switch_].cond_graph_map[curr_cond] = g;
|
||||
SetSwitchGraph();
|
||||
if (!curr_switch_.is_null()) {
|
||||
// push this {g, args} to all user while graph_inputs for nest while,
|
||||
// when current condition recall over delete this cond in graph_inputs.
|
||||
for (auto &iter : graph_inputs_) {
|
||||
iter.second.push_back({g, args});
|
||||
}
|
||||
if (graph_inputs_.find(curr_switch_) == graph_inputs_.end()) {
|
||||
graph_inputs_[curr_switch_].push_back({g, args});
|
||||
}
|
||||
}
|
||||
bool curr_cond = simu_cond_map_[curr_switch_].curr_cond;
|
||||
MS_LOG(DEBUG) << "switch call MsSimuRunGraph:" << curr_cond << ", " << g;
|
||||
simu_cond_map_[curr_switch_].cond_graph_map[curr_cond] = g;
|
||||
SetSwitchGraph();
|
||||
}
|
||||
|
||||
std::vector<BaseRef> outputs;
|
||||
|
@ -205,42 +272,17 @@ VectorRef MsBackend::MsRunGraph(const GraphId &g, const VectorRef &args) {
|
|||
return outputs;
|
||||
}
|
||||
|
||||
void MsBackend::SetSimuCondFlag(const BaseRef &c, int flag) {
|
||||
MS_LOG(DEBUG) << "while set cond :" << c.ToString() << ", " << simu_cond_map_.size();
|
||||
|
||||
if (simu_cond_map_.find(c) == simu_cond_map_.end()) {
|
||||
MS_LOG(EXCEPTION) << "error c not find";
|
||||
}
|
||||
simu_cond_map_[c].flag = flag;
|
||||
}
|
||||
|
||||
int MsBackend::GetSimuCondFlag(const BaseRef &c) {
|
||||
BaseRef cond = c;
|
||||
if (cond.is_null()) {
|
||||
MS_LOG(DEBUG) << "get curr_switch";
|
||||
cond = curr_switch_;
|
||||
}
|
||||
if (simu_cond_map_.find(cond) == simu_cond_map_.end()) {
|
||||
MS_LOG(ERROR) << "error c not find";
|
||||
return -1;
|
||||
}
|
||||
return simu_cond_map_[cond].flag;
|
||||
}
|
||||
|
||||
SwitchCondStatus MsBackend::SetSimuCond(const BaseRef &c, bool value) {
|
||||
MS_LOG(DEBUG) << "set cond :" << c.ToString() << ", " << simu_cond_map_.size();
|
||||
|
||||
CondGraph cond_graph;
|
||||
cond_graph.curr_cond = value;
|
||||
if (simu_cond_map_.find(c) == simu_cond_map_.end()) {
|
||||
cond_graph.flag = 0;
|
||||
simu_cond_map_[c] = cond_graph;
|
||||
}
|
||||
|
||||
if (simu_cond_map_[c].cond_graph_map.count(value)) {
|
||||
if (value == true) {
|
||||
return kCondAlreadyRun;
|
||||
}
|
||||
return kCondAlreadyRun;
|
||||
}
|
||||
simu_cond_map_[c].curr_cond = value;
|
||||
MS_LOG(DEBUG) << "end set cond ";
|
||||
|
|
|
@ -16,9 +16,11 @@
|
|||
#ifndef MINDSPORE_CCSRC_VM_BACKEND_H_
|
||||
#define MINDSPORE_CCSRC_VM_BACKEND_H_
|
||||
|
||||
#include <string>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
#include "ir/anf.h"
|
||||
#include "vm/segment_runner.h"
|
||||
|
@ -45,6 +47,8 @@ class Backend {
|
|||
virtual bool GetCond(const BaseRef &c, bool *value);
|
||||
virtual void SetSwitchGraph() {}
|
||||
virtual void SetSwitchActive(const BaseRef &, bool) {}
|
||||
virtual void RecallGraphInput(const FuncGraphPtr &, const VectorRef &, const BaseRef &) {}
|
||||
virtual void SetGraphUserInputs(const FuncGraphPtr &, const FuncGraphPtr &, const AnfNodePtrList &) {}
|
||||
|
||||
void set_curr_switch(const BaseRef &value) {
|
||||
curr_switch_ = value;
|
||||
|
@ -54,8 +58,6 @@ class Backend {
|
|||
BaseRef curr_switch() { return curr_switch_; }
|
||||
virtual void Link(GraphId) {}
|
||||
virtual LinConvertResult GetMultiGraphRun(const FuncGraphPtr &) { return LinConvertResult(); }
|
||||
virtual void SetSimuCondFlag(const BaseRef &, int) {}
|
||||
virtual int GetSimuCondFlag(const BaseRef &) { return 0; }
|
||||
|
||||
LinConvertResult multi_result() { return multi_result_; }
|
||||
void set_multi_result(const LinConvertResult &value) { multi_result_ = value; }
|
||||
|
@ -75,11 +77,11 @@ class Backend {
|
|||
bool simu_flag_;
|
||||
LinConvertResult multi_result_;
|
||||
AnfNodePtr final_output_;
|
||||
std::unordered_map<FuncGraphPtr, std::pair<FuncGraphPtr, AnfNodePtrList>> graph_user_inputs_;
|
||||
};
|
||||
|
||||
struct CondGraph {
|
||||
bool curr_cond;
|
||||
int flag;
|
||||
std::unordered_map<bool, GraphId> cond_graph_map;
|
||||
};
|
||||
|
||||
|
@ -97,15 +99,17 @@ class MsBackend : public Backend {
|
|||
|
||||
void SetSwitchGraph() override;
|
||||
void SetSwitchActive(const BaseRef &c, bool cond) override;
|
||||
void RecallGraphInput(const FuncGraphPtr &, const VectorRef &, const BaseRef &) override;
|
||||
void SetGraphUserInputs(const FuncGraphPtr &, const FuncGraphPtr &, const AnfNodePtrList &) override;
|
||||
void Link(GraphId) override;
|
||||
AnfNodePtr ConvertGraphInput(const FuncGraphPtr &, const AnfNodePtr &);
|
||||
LinConvertResult GetMultiGraphRun(const FuncGraphPtr &g) override;
|
||||
void SetSimuCondFlag(const BaseRef &c, int flag) override;
|
||||
int GetSimuCondFlag(const BaseRef &c) override;
|
||||
|
||||
private:
|
||||
session::SessionPtr sess_;
|
||||
std::unordered_map<BaseRef, CondGraph, BaseRefHash> simu_cond_map_;
|
||||
std::unordered_map<GraphId, LinConvertResult> graph_id_map_;
|
||||
std::unordered_map<BaseRef, std::list<std::pair<GraphId, VectorRef>>, BaseRefHash> graph_inputs_;
|
||||
};
|
||||
} // namespace compile
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -390,6 +390,16 @@ void CompileGraph::AddTailCall(const AnfNodePtr &fn, size_t size) {
|
|||
void CompileGraph::AddPartial(const CNodePtr &node) {
|
||||
auto inputs = node->inputs();
|
||||
VectorRef args;
|
||||
auto fn = inputs[1];
|
||||
if (!IsValueNode<FuncGraph>(fn)) {
|
||||
MS_LOG(EXCEPTION) << "The type of 1st input of node must be FuncGraph";
|
||||
}
|
||||
if (backend_->is_multi_graph_sink()) {
|
||||
auto func_graph = GetValueNode<FuncGraphPtr>(fn);
|
||||
args.emplace_back(func_graph);
|
||||
AnfNodePtrList outs(inputs.begin() + 2, inputs.end());
|
||||
backend_->SetGraphUserInputs(func_graph, node->func_graph(), outs);
|
||||
}
|
||||
for (size_t i = 1; i < inputs.size(); i++) {
|
||||
args.emplace_back(Ref(inputs[i]));
|
||||
}
|
||||
|
@ -442,12 +452,17 @@ void CompileGraph::AddPrimitive(const CNodePtr &node, const PrimitivePtr &prim)
|
|||
}
|
||||
|
||||
int CompileGraph::AddCall(const FuncGraphPtr &graph, const CNodePtr &node) {
|
||||
auto node_inputs = node->inputs();
|
||||
AnfNodePtr fn = node_inputs[0];
|
||||
auto inputs = node->inputs();
|
||||
AnfNodePtr fn = inputs[0];
|
||||
if (backend_->is_multi_graph_sink() && IsValueNode<FuncGraph>(fn)) {
|
||||
auto func_graph = GetValueNode<FuncGraphPtr>(fn);
|
||||
AnfNodePtrList outs(inputs.begin() + 1, inputs.end());
|
||||
backend_->SetGraphUserInputs(func_graph, node->func_graph(), outs);
|
||||
}
|
||||
(void)Ref(fn);
|
||||
size_t size = node_inputs.size();
|
||||
size_t size = inputs.size();
|
||||
for (size_t i = size - 1; i > 0; i--) {
|
||||
AddInput(node_inputs[i]);
|
||||
AddInput(inputs[i]);
|
||||
}
|
||||
if (node == graph->output()) {
|
||||
AddTailCall(fn, size);
|
||||
|
|
|
@ -32,7 +32,8 @@ namespace compile {
|
|||
// Arguments:
|
||||
// fn_: Callable function.
|
||||
// args_: Sequence of function args.
|
||||
StructPartial::StructPartial(int fn, const VectorRef &args) : fn_(fn), args_(args) {}
|
||||
// fg_: Graph of function.
|
||||
StructPartial::StructPartial(int fn, const VectorRef &args, const FuncGraphPtr &fg) : fn_(fn), args_(args), fg_(fg) {}
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const StructPartial &other) {
|
||||
os << "partial(" << other.fn_ << ", " << other.args_.ToString() << ")";
|
||||
|
@ -40,7 +41,7 @@ std::ostream &operator<<(std::ostream &os, const StructPartial &other) {
|
|||
}
|
||||
|
||||
bool operator==(const StructPartial &lhs, const StructPartial &rhs) {
|
||||
return (lhs.fn_ == rhs.fn_ && lhs.args_ == rhs.args_);
|
||||
return (lhs.fn_ == rhs.fn_ && lhs.args_ == rhs.args_ && lhs.fg_ == rhs.fg_);
|
||||
}
|
||||
|
||||
StructSimuSwitch::StructSimuSwitch(const BaseRef &fn, const BaseRef &value) : fn_(fn), value_(value) {}
|
||||
|
@ -242,16 +243,6 @@ void FinalVM::InstTailCall(const VectorRef &args) {
|
|||
int nargs = utils::cast<int>(args[2]);
|
||||
|
||||
auto new_jmp = Ref(jmp);
|
||||
|
||||
if (backend_->simu_flag()) {
|
||||
if (backend_->GetSimuCondFlag(BaseRef()) == 2) {
|
||||
MS_LOG(DEBUG) << "invoke while call tail first";
|
||||
Pop(height);
|
||||
Push(1);
|
||||
Popp();
|
||||
return;
|
||||
}
|
||||
}
|
||||
MoveStack(nargs, height);
|
||||
MS_LOG(DEBUG) << "TailCall pushp:" << pc_ << ", jmp:" << jmp;
|
||||
DoJmp(new_jmp);
|
||||
|
@ -291,8 +282,30 @@ void FinalVM::InstReturn(const VectorRef &args) {
|
|||
MS_LOG(DEBUG) << "End";
|
||||
}
|
||||
|
||||
void FinalVM::InstPartial(const VectorRef &args) {
|
||||
MS_LOG(DEBUG) << "Start";
|
||||
void FinalVM::InstSimuPartial(const VectorRef &args) {
|
||||
const size_t args_size = 2;
|
||||
if (args.size() < args_size) {
|
||||
MS_LOG(ERROR) << __FUNCTION__ << " requires " << args_size << " or more parameters, while the input size is "
|
||||
<< args.size() << ".";
|
||||
return;
|
||||
}
|
||||
|
||||
auto &node = args[0];
|
||||
if (!utils::isa<FuncGraphPtr>(node)) {
|
||||
MS_LOG(ERROR) << "The type of 1st input of node must be FuncGraph";
|
||||
return;
|
||||
}
|
||||
auto fg = utils::cast<FuncGraphPtr>(node);
|
||||
int fn_ = utils::cast<int>(args[1]);
|
||||
auto fn = utils::cast<int>(Ref(fn_));
|
||||
MS_LOG(DEBUG) << "Partial argssize:" << args.size();
|
||||
std::vector<BaseRef> outs(args.size() - 2);
|
||||
(void)std::transform(args.begin() + 2, args.end(), outs.begin(),
|
||||
[&, this](const BaseRef &a) { return Ref(utils::cast<int>(a)); });
|
||||
Push(std::make_shared<StructPartial>(fn, VectorRef(outs), fg));
|
||||
}
|
||||
|
||||
void FinalVM::InstRealPartial(const VectorRef &args) {
|
||||
const size_t args_size = 1;
|
||||
if (args.size() < args_size) {
|
||||
MS_LOG(ERROR) << __FUNCTION__ << " requires " << args_size << " or more parameters, while the input size is "
|
||||
|
@ -304,10 +317,18 @@ void FinalVM::InstPartial(const VectorRef &args) {
|
|||
auto fn = utils::cast<int>(Ref(fn_));
|
||||
MS_LOG(DEBUG) << "Partial argssize:" << args.size();
|
||||
std::vector<BaseRef> outs(args.size() - 1);
|
||||
|
||||
(void)std::transform(args.begin() + 1, args.end(), outs.begin(),
|
||||
[&, this](const BaseRef &a) { return Ref(utils::cast<int>(a)); });
|
||||
Push(std::make_shared<StructPartial>(fn, VectorRef(outs)));
|
||||
}
|
||||
|
||||
void FinalVM::InstPartial(const VectorRef &args) {
|
||||
MS_LOG(DEBUG) << "Start";
|
||||
if (backend_->is_multi_graph_sink()) {
|
||||
InstSimuPartial(args);
|
||||
} else {
|
||||
InstRealPartial(args);
|
||||
}
|
||||
MS_LOG(DEBUG) << "End";
|
||||
}
|
||||
|
||||
|
@ -328,43 +349,57 @@ void FinalVM::InstSimuSwitch(const VectorRef &args) {
|
|||
bool bool_value = cond;
|
||||
SwitchCondStatus cond_stat = backend_->SetSimuCond(c, bool_value);
|
||||
|
||||
int cond_flag = backend_->GetSimuCondFlag(c);
|
||||
MS_LOG(DEBUG) << "Simu switch cond:" << cond << ", " << cond_flag << ", " << c.cast<AnfNodePtr>()->DebugString();
|
||||
if (cond_flag == 2) {
|
||||
Popp();
|
||||
Popp();
|
||||
backend_->SetSimuCondFlag(c, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
if (cond_stat == kCondAlreadyRun) {
|
||||
MS_LOG(DEBUG) << "switch alreay run bool while true jmp";
|
||||
if (cond_flag == 0) {
|
||||
MS_LOG(DEBUG) << "switch second run bool while true jmp";
|
||||
backend_->SetSwitchActive(c, true);
|
||||
Push(std::make_shared<StructSimuSwitch>(Ref(vtrue), c));
|
||||
Pushsp();
|
||||
backend_->SetSimuCondFlag(c, 1);
|
||||
return;
|
||||
} else if (cond_flag == 1) {
|
||||
MS_LOG(DEBUG) << "switch first run bool while if jmp";
|
||||
Push(std::make_shared<StructSimuSwitch>(Ref(vfalse), c));
|
||||
(void)backend_->SetSimuCond(c, false);
|
||||
backend_->SetSimuCondFlag(c, 2);
|
||||
return;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "error cond not find";
|
||||
return;
|
||||
BaseRef jmp = Ref(vtrue);
|
||||
if (utils::isa<StructPartial>(jmp)) {
|
||||
auto new_jmp = utils::cast<std::shared_ptr<StructPartial>>(jmp);
|
||||
backend_->RecallGraphInput(new_jmp->fg_, new_jmp->args_, c);
|
||||
}
|
||||
cond_jmp_[c] = Ref(vfalse);
|
||||
Push(static_cast<int>(cond_stat));
|
||||
Popp();
|
||||
backend_->SetSwitchActive(c, bool_value);
|
||||
return;
|
||||
}
|
||||
if (bool_value) {
|
||||
Push(std::make_shared<StructSimuSwitch>(Ref(vtrue), c));
|
||||
Pushsp();
|
||||
} else {
|
||||
MergeJmpArgs(Ref(vfalse), c);
|
||||
Push(std::make_shared<StructSimuSwitch>(Ref(vfalse), c));
|
||||
}
|
||||
}
|
||||
|
||||
void FinalVM::MergeJmpArgs(const BaseRef &jmp, const BaseRef &c) {
|
||||
auto iter = cond_jmp_.find(c);
|
||||
if (iter == cond_jmp_.end()) {
|
||||
return;
|
||||
}
|
||||
auto old_jmp = utils::cast<std::shared_ptr<StructPartial>>(iter->second);
|
||||
auto new_jmp = utils::cast<std::shared_ptr<StructPartial>>(jmp);
|
||||
auto &old_args = old_jmp->args_;
|
||||
auto &new_args = new_jmp->args_;
|
||||
for (size_t i = 0; i < new_args.size(); ++i) {
|
||||
auto &old_arg = old_args[i];
|
||||
auto &new_arg = new_args[i];
|
||||
if (utils::isa<VectorRef>(old_arg)) {
|
||||
auto old_vec_ref = utils::cast<VectorRef>(old_arg);
|
||||
if (utils::isa<VectorRef>(new_arg)) {
|
||||
auto new_vec_ref = utils::cast<VectorRef>(new_arg);
|
||||
std::copy(new_vec_ref.begin(), new_vec_ref.end(), std::back_inserter(old_vec_ref));
|
||||
}
|
||||
new_arg = old_vec_ref;
|
||||
} else if (utils::isa<VectorRef>(new_arg)) {
|
||||
auto new_vec_ref = utils::cast<VectorRef>(new_arg);
|
||||
new_vec_ref.push_back(old_arg);
|
||||
new_arg = new_vec_ref;
|
||||
} else {
|
||||
new_arg = VectorRef({new_arg, old_arg});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FinalVM::InstRealSwitch(const VectorRef &args) {
|
||||
const size_t args_size = 3;
|
||||
if (args.size() != args_size) {
|
||||
|
@ -399,6 +434,7 @@ void FinalVM::InstSwitch(const VectorRef &args) {
|
|||
} else {
|
||||
InstRealSwitch(args);
|
||||
}
|
||||
MS_LOG(DEBUG) << "End";
|
||||
}
|
||||
|
||||
void FinalVM::InstTuple(const VectorRef &args) {
|
||||
|
|
|
@ -27,6 +27,9 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "ir/anf.h"
|
||||
#include "utils/base_ref.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -60,13 +63,14 @@ const std::vector<std::string> inst_str{"call", "tail_call", "return", "partial
|
|||
class StructPartial : public Base {
|
||||
public:
|
||||
// Initialize StructPartial.
|
||||
StructPartial(int fn, const VectorRef &args);
|
||||
StructPartial(int fn, const VectorRef &args, const FuncGraphPtr &fg = nullptr);
|
||||
|
||||
virtual ~StructPartial() = default;
|
||||
MS_DECLARE_PARENT(StructPartial, Base)
|
||||
|
||||
int fn_;
|
||||
VectorRef args_;
|
||||
FuncGraphPtr fg_;
|
||||
};
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const StructPartial &other);
|
||||
|
@ -98,6 +102,8 @@ class FinalVM {
|
|||
void InstTailCall(const VectorRef &args);
|
||||
void InstReturn(const VectorRef &args);
|
||||
void InstPartial(const VectorRef &args);
|
||||
void InstSimuPartial(const VectorRef &args);
|
||||
void InstRealPartial(const VectorRef &args);
|
||||
void InstSwitch(const VectorRef &args);
|
||||
void InstSimuSwitch(const VectorRef &args);
|
||||
void InstRealSwitch(const VectorRef &args);
|
||||
|
@ -120,6 +126,7 @@ class FinalVM {
|
|||
void Pushsp();
|
||||
void Popsp();
|
||||
void DoJmp(const BaseRef &jmp);
|
||||
void MergeJmpArgs(const BaseRef &jmp, const BaseRef &c);
|
||||
|
||||
private:
|
||||
InstSet insts_;
|
||||
|
@ -128,6 +135,7 @@ class FinalVM {
|
|||
std::stack<int> retsp_;
|
||||
int pc_;
|
||||
int sp_;
|
||||
std::unordered_map<BaseRef, BaseRef, BaseRefHash> cond_jmp_;
|
||||
BackendPtr backend_;
|
||||
const InstFunctionMap inst_function_map = {
|
||||
{Instruction::kCall, [this](const VectorRef &args) { InstCall(args); }},
|
||||
|
|
|
@ -0,0 +1,184 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_multigraph_sink """
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode = context.PYNATIVE_MODE, save_graphs = True, device_target = "Ascend")
|
||||
context.set_context(enable_task_sink = True, device_id = 0)
|
||||
|
||||
|
||||
c1 = Tensor([2], mstype.int32)
|
||||
c2 = Tensor([14], mstype.int32)
|
||||
c3 = Tensor([1], mstype.int32)
|
||||
c4 = Tensor([0], mstype.int32)
|
||||
c5 = Tensor([14], mstype.int32)
|
||||
|
||||
|
||||
@ms_function
|
||||
def simple_if(x, y, z):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
else:
|
||||
x = x + 2
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def if_by_if(x, y, z):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
if y > x:
|
||||
x = x + 2
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def if_in_if(x, y, z):
|
||||
out = c4
|
||||
if x < y:
|
||||
z = c4 + c4
|
||||
if z < y:
|
||||
z = z + 2
|
||||
out = out + z
|
||||
x = x + 3
|
||||
out = out + x
|
||||
return out
|
||||
|
||||
|
||||
@ms_function
|
||||
def simple_while(x, y, z):
|
||||
y = y + 4
|
||||
while x < y:
|
||||
x = x + 1
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_by_while(x, y, z):
|
||||
while x < y:
|
||||
x = x + 1
|
||||
while z < c5:
|
||||
z = z + 1
|
||||
x = x + 1
|
||||
x = x + 1
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_in_while(x, y, z):
|
||||
out = c4
|
||||
while x < y:
|
||||
z = c4 + c4
|
||||
while z < y:
|
||||
z = z + 1
|
||||
out = out + z
|
||||
x = x + 1
|
||||
out = out + x
|
||||
return out
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_by_while_in_while(x, y, z):
|
||||
out = c4
|
||||
while x < c2:
|
||||
y = c4 + c4
|
||||
while y < c2:
|
||||
y = y + 1
|
||||
out = out + y
|
||||
z = c4 + c4
|
||||
while z < c2:
|
||||
z = z + 1
|
||||
out = out + z
|
||||
x = x + 1
|
||||
out = out + x
|
||||
return out
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_in_while_in_while(x, y, z):
|
||||
out = c4
|
||||
while x < c2:
|
||||
y = c4 + c4
|
||||
while y < c2:
|
||||
y = y + 1
|
||||
z = c4 + c4
|
||||
while z < c2:
|
||||
z = z + 1
|
||||
out = out + z
|
||||
out = out + y
|
||||
x = x + 1
|
||||
out = out + x
|
||||
return out
|
||||
|
||||
|
||||
def test_simple_if():
|
||||
output = simple_if(c1, c2, c3)
|
||||
expect = Tensor([6], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_if_by_if():
|
||||
output = if_by_if(c1, c2, c3)
|
||||
expect = Tensor([8], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_if_in_if():
|
||||
output = if_in_if(c1, c2, c3)
|
||||
expect = Tensor([7], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_simple_while():
|
||||
output = simple_while(c1, c2, c3)
|
||||
expect = Tensor([21], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_while_by_while():
|
||||
output = while_by_while(c1, c2, c3)
|
||||
expect = Tensor([28], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_while_in_while():
|
||||
output = while_in_while(c1, c2, c3)
|
||||
expect = Tensor([1274], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_while_by_while_in_while():
|
||||
output = while_by_while_in_while(c1, c2, c3)
|
||||
expect = Tensor([350], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_while_in_while_in_while():
|
||||
output = while_in_while_in_while(c1, c2, c3)
|
||||
expect = Tensor([2534], mstype.int32)
|
||||
assert output == expect
|
||||
|
|
@ -0,0 +1,119 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_multigraph_sink """
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode = context.PYNATIVE_MODE, save_graphs = True, device_target = "Ascend")
|
||||
context.set_context(enable_task_sink = True, device_id = 0)
|
||||
|
||||
|
||||
c1 = Tensor([2], mstype.int32)
|
||||
c2 = Tensor([14], mstype.int32)
|
||||
c3 = Tensor([1], mstype.int32)
|
||||
c4 = Tensor([0], mstype.int32)
|
||||
c5 = Tensor([14], mstype.int32)
|
||||
|
||||
|
||||
@ms_function
|
||||
def simple_if(x, y, z):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
else:
|
||||
x = x + 2
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def if_by_if(x, y, z):
|
||||
if x < y:
|
||||
x = x + 1
|
||||
if y > x:
|
||||
x = x + 2
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def if_in_if(x, y, z):
|
||||
out = c4
|
||||
if x < y:
|
||||
z = c4 + c4
|
||||
if z < y:
|
||||
z = z + 2
|
||||
out = out + z
|
||||
x = x + 3
|
||||
out = out + x
|
||||
return out
|
||||
|
||||
|
||||
@ms_function
|
||||
def simple_while(x, y, z):
|
||||
y = y + 4
|
||||
while x < y:
|
||||
x = x + 1
|
||||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_by_while(x, y, z):
|
||||
while x < y:
|
||||
x = x + 1
|
||||
while z < c5:
|
||||
z = z + 1
|
||||
x = x + 1
|
||||
x = x + 1
|
||||
return x
|
||||
|
||||
|
||||
def test_simple_if():
|
||||
output = simple_if(c1, c2, c3)
|
||||
expect = Tensor([6], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_if_by_if():
|
||||
output = if_by_if(c1, c2, c3)
|
||||
expect = Tensor([8], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_if_in_if():
|
||||
output = if_in_if(c1, c2, c3)
|
||||
expect = Tensor([7], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_simple_while():
|
||||
output = simple_while(c1, c2, c3)
|
||||
expect = Tensor([21], mstype.int32)
|
||||
assert output == expect
|
||||
|
||||
|
||||
def test_while_by_while():
|
||||
output = while_by_while(c1, c2, c3)
|
||||
expect = Tensor([28], mstype.int32)
|
||||
assert output == expect
|
||||
|
Loading…
Reference in New Issue