forked from mindspore-Ecosystem/mindspore
!8554 Add expand_as function to tensor
From: @liangzhibo Reviewed-by: @zh_qh,@chenfei52 Signed-off-by: @zh_qh
This commit is contained in:
commit
c11c79170e
|
@ -156,6 +156,12 @@ def enumerate_(x, start=0):
|
|||
return ret
|
||||
|
||||
|
||||
def expand_tensor_as(x, y):
|
||||
"""Expand tensor"""
|
||||
broadcast_to = P.BroadcastTo(shape_(y))
|
||||
return broadcast_to(x)
|
||||
|
||||
|
||||
def isinstance_(x, base_type):
|
||||
"""Determine whether x is an instance of base_type."""
|
||||
x_type = F.typeof(x)
|
||||
|
|
|
@ -147,34 +147,35 @@ BuiltInTypeMap &GetMethodMap() {
|
|||
}},
|
||||
{kObjectTypeTensorType,
|
||||
{
|
||||
{"all", std::string("all_")}, // C.reduce_all
|
||||
{"any", std::string("any_")}, // C.reduce_any
|
||||
{"__add__", std::string("add")}, // C.add
|
||||
{"__sub__", std::string("sub")}, // C.sub
|
||||
{"__mul__", std::string("mul")}, // C.mul
|
||||
{"__truediv__", std::string("truediv")}, // C.truediv
|
||||
{"__floordiv__", std::string("floordiv")}, // C.floordiv
|
||||
{"__mod__", std::string("mod")}, // C.mod
|
||||
{"__pow__", std::string("pow_")}, // C.pow
|
||||
{"__floor__", std::string("array_floor")}, // C.array_floor
|
||||
{"__trunc__", std::string("array_trunc")}, // C.array_trunc
|
||||
{"__pos__", std::string("array_uadd")}, // C.array_uadd
|
||||
{"__neg__", std::string("array_usub")}, // C.array_usub
|
||||
{"__eq__", std::string("eq")}, // C.eq
|
||||
{"__ne__", std::string("ne")}, // C.ne
|
||||
{"__lt__", std::string("lt")}, // C.lt
|
||||
{"__gt__", std::string("gt")}, // C.gt
|
||||
{"__le__", std::string("le")}, // C.le
|
||||
{"__ge__", std::string("ge")}, // C.ge
|
||||
{"__matmul__", prim::kPrimDot}, // P.dot,
|
||||
{"__len__", prim::kPrimArrayLen}, // P.array_len,
|
||||
{"__getitem__", prim::kPrimArrayGetItem}, // P.array_getitem,
|
||||
{"__setitem__", prim::kPrimArraySetItem}, // P.array_setitem,
|
||||
{"__ms_iter__", std::string("array_iter")}, // C.array_iter
|
||||
{"__ms_to_array__", prim::kPrimIdentity}, // P.identity,
|
||||
{"item", prim::kPrimArrayToScalar}, // P.array_to_scalar,
|
||||
{"transpose", std::string("transpose")}, // P.transpose
|
||||
{"__bool__", std::string("tensor_bool")}, // C.tensor_bool
|
||||
{"all", std::string("all_")}, // C.reduce_all
|
||||
{"any", std::string("any_")}, // C.reduce_any
|
||||
{"__add__", std::string("add")}, // C.add
|
||||
{"__sub__", std::string("sub")}, // C.sub
|
||||
{"__mul__", std::string("mul")}, // C.mul
|
||||
{"__truediv__", std::string("truediv")}, // C.truediv
|
||||
{"__floordiv__", std::string("floordiv")}, // C.floordiv
|
||||
{"__mod__", std::string("mod")}, // C.mod
|
||||
{"__pow__", std::string("pow_")}, // C.pow
|
||||
{"__floor__", std::string("array_floor")}, // C.array_floor
|
||||
{"__trunc__", std::string("array_trunc")}, // C.array_trunc
|
||||
{"__pos__", std::string("array_uadd")}, // C.array_uadd
|
||||
{"__neg__", std::string("array_usub")}, // C.array_usub
|
||||
{"__eq__", std::string("eq")}, // C.eq
|
||||
{"__ne__", std::string("ne")}, // C.ne
|
||||
{"__lt__", std::string("lt")}, // C.lt
|
||||
{"__gt__", std::string("gt")}, // C.gt
|
||||
{"__le__", std::string("le")}, // C.le
|
||||
{"__ge__", std::string("ge")}, // C.ge
|
||||
{"expand_as", std::string("expand_tensor_as")}, // C.expand_as
|
||||
{"__matmul__", prim::kPrimDot}, // P.dot,
|
||||
{"__len__", prim::kPrimArrayLen}, // P.array_len,
|
||||
{"__getitem__", prim::kPrimArrayGetItem}, // P.array_getitem,
|
||||
{"__setitem__", prim::kPrimArraySetItem}, // P.array_setitem,
|
||||
{"__ms_iter__", std::string("array_iter")}, // C.array_iter
|
||||
{"__ms_to_array__", prim::kPrimIdentity}, // P.identity,
|
||||
{"item", prim::kPrimArrayToScalar}, // P.array_to_scalar,
|
||||
{"transpose", std::string("transpose")}, // P.transpose
|
||||
{"__bool__", std::string("tensor_bool")}, // C.tensor_bool
|
||||
}},
|
||||
{kObjectTypeJTagged, {}},
|
||||
{kObjectTypeSymbolicKeyType, {}},
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test expand_as"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
def test_expand_as():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.t1 = Tensor([1, 2, 3])
|
||||
self.t2 = Tensor([[1, 1, 1], [1, 1, 1]])
|
||||
|
||||
def construct(self):
|
||||
return self.t1.expand_as(self.t2)
|
||||
|
||||
net = Net()
|
||||
net()
|
||||
|
||||
|
||||
def test_expand_as_parameter():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.t1 = Tensor([1, 2, 3])
|
||||
|
||||
def construct(self, x):
|
||||
return self.t1.expand_as(x)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 1, 1], [1, 1, 1]]))
|
||||
|
||||
|
||||
def test_expand_tensor_as_parameter_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.t2 = Tensor([[1, 1, 1], [1, 1, 1]])
|
||||
|
||||
def construct(self, x):
|
||||
return x.expand_as(self.t2)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([1, 2, 3]))
|
Loading…
Reference in New Issue