forked from mindspore-Ecosystem/mindspore
!9116 Fix some error format of comments for web api.
From: @zhang_yi2020 Reviewed-by: @gemini524,@liangchenghui Signed-off-by: @liangchenghui
This commit is contained in:
commit
c1100f1ab7
|
@ -293,11 +293,11 @@ class Tensor(Tensor_):
|
|||
|
||||
|
||||
def view(self, *shape):
|
||||
"""
|
||||
r"""
|
||||
Reshape the tensor according to the input shape.
|
||||
|
||||
Args:
|
||||
shape (Union(list(int), *int)): Dimension of the output tensor.
|
||||
shape (Union(list[int], \*int)): Dimension of the output tensor.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dimension as the input shape.
|
||||
|
|
|
@ -539,11 +539,10 @@ def set_context(**kwargs):
|
|||
- training_trace: collect iterative trajectory data, that is, the training task and software information of
|
||||
the AI software stack, to achieve performance analysis of the training task, focusing on data
|
||||
enhancement, forward and backward calculation, gradient aggregation update and other related data.
|
||||
|
||||
- task_trace: collect task trajectory data, that is, the hardware information of the HWTS/AICore of
|
||||
the Ascend 910 processor, and analyze the information of beginning and ending of the task.
|
||||
|
||||
- op_trace: collect single operator performance data.
|
||||
|
||||
The profiling can choose the combination of `training_trace`, `task_trace`,
|
||||
`training_trace` and `task_trace` combination, and eparated by colons;
|
||||
a single operator can choose `op_trace`, `op_trace` cannot be combined with
|
||||
|
|
|
@ -151,8 +151,9 @@ class Dataset:
|
|||
def parse_tree(self):
|
||||
"""
|
||||
Internal method to parse the API tree into an IR tree.
|
||||
|
||||
Returns:
|
||||
DatasetNode. The root of the IR tree.
|
||||
DatasetNode, The root of the IR tree.
|
||||
"""
|
||||
if len(self.parent) > 1:
|
||||
raise ValueError("The data pipeline is not a tree (i.e., one node has 2 consumers)")
|
||||
|
@ -823,7 +824,7 @@ class Dataset:
|
|||
ValueError: If sizes is list of float and not all floats are between 0 and 1, or if the
|
||||
floats don’t sum to 1.
|
||||
|
||||
Returns
|
||||
Returns:
|
||||
tuple(Dataset), a tuple of datasets that have been split.
|
||||
|
||||
Examples:
|
||||
|
@ -1516,10 +1517,10 @@ class Dataset:
|
|||
"""
|
||||
Get the class index.
|
||||
|
||||
Return:
|
||||
Returns:
|
||||
Dict, A str-to-int mapping from label name to index.
|
||||
Dict, A str-to-list<int> mapping from label name to index for Coco ONLY. The second number
|
||||
in the list is used to indicate the super category
|
||||
in the list is used to indicate the super category
|
||||
"""
|
||||
if self.children:
|
||||
return self.children[0].get_class_indexing()
|
||||
|
@ -1710,7 +1711,7 @@ class MappableDataset(SourceDataset):
|
|||
ValueError: If sizes is list of float and not all floats are between 0 and 1, or if the
|
||||
floats don’t sum to 1.
|
||||
|
||||
Returns
|
||||
Returns:
|
||||
tuple(Dataset), a tuple of datasets that have been split.
|
||||
|
||||
Examples:
|
||||
|
@ -4064,7 +4065,7 @@ class ManifestDataset(MappableDataset):
|
|||
"""
|
||||
Get the class index.
|
||||
|
||||
Return:
|
||||
Returns:
|
||||
Dict, A str-to-int mapping from label name to index.
|
||||
"""
|
||||
if self.class_indexing is None:
|
||||
|
@ -4720,7 +4721,7 @@ class VOCDataset(MappableDataset):
|
|||
"""
|
||||
Get the class index.
|
||||
|
||||
Return:
|
||||
Returns:
|
||||
Dict, A str-to-int mapping from label name to index.
|
||||
"""
|
||||
if self.task != "Detection":
|
||||
|
@ -4911,7 +4912,7 @@ class CocoDataset(MappableDataset):
|
|||
"""
|
||||
Get the class index.
|
||||
|
||||
Return:
|
||||
Returns:
|
||||
Dict, A str-to-list<int> mapping from label name to index
|
||||
"""
|
||||
if self.task not in {"Detection", "Panoptic"}:
|
||||
|
|
|
@ -61,7 +61,7 @@ class Occlusion(PerturbationAttribution):
|
|||
Inputs:
|
||||
- **inputs** (Tensor) - The input data to be explained, a 4D tensor of shape :math:`(N, C, H, W)`.
|
||||
- **targets** (Tensor, int) - The label of interest. It should be a 1D or 0D tensor, or an integer.
|
||||
If it is a 1D tensor, its length should be the same as `inputs`.
|
||||
If it is a 1D tensor, its length should be the same as `inputs`.
|
||||
|
||||
Outputs:
|
||||
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
||||
|
|
|
@ -365,8 +365,12 @@ class FastGelu(Cell):
|
|||
Applies FastGelu function to each element of the input. The input is a Tensor with any valid shape.
|
||||
|
||||
FastGelu is defined as:
|
||||
:math:`FastGelu(x_i) = \frac {x_i} {1 + \exp(-1.702 * \left| x_i \right|)} *
|
||||
\exp(0.851 * (x_i - \left| x_i \right|))`, where :math:`x_i` is the element of the input.
|
||||
|
||||
.. math::
|
||||
FastGelu(x_i) = \frac {x_i} {1 + \exp(-1.702 * \left| x_i \right|)} *
|
||||
\exp(0.851 * (x_i - \left| x_i \right|))
|
||||
|
||||
where :math:`x_i` is the element of the input.
|
||||
|
||||
Inputs:
|
||||
- **input_data** (Tensor) - The input of FastGelu with data type of float16 or float32.
|
||||
|
|
|
@ -221,7 +221,8 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
|
|||
|
||||
.. math::
|
||||
\ell(x_i, t_i) = - \log\left(\frac{\exp(x_{t_i})}{\sum_j \exp(x_j)}\right)
|
||||
= -x_{t_i} + \log\left(\sum_j \exp(x_j)\right),
|
||||
= -x_{t_i} + \log\left(\sum_j \exp(x_j)\right)
|
||||
|
||||
where :math:`x_i` is a 1D score Tensor, :math:`t_i` is a scalar.
|
||||
|
||||
Note:
|
||||
|
|
|
@ -91,7 +91,8 @@ class MSE(Metric):
|
|||
norm) between each element in the input: :math:`x` and the target: :math:`y`.
|
||||
|
||||
.. math::
|
||||
\text{MSE}(x,\ y) = \frac{\sum_{i=1}^n(y_i - x_i)^2}{n},
|
||||
\text{MSE}(x,\ y) = \frac{\sum_{i=1}^n(y_i - x_i)^2}{n}
|
||||
|
||||
where :math:`n` is batch size.
|
||||
|
||||
Examples:
|
||||
|
|
|
@ -26,6 +26,7 @@ class PowerTransform(Bijector):
|
|||
|
||||
.. math::
|
||||
Y = g(X) = (1 + X * c)^{1 / c}, X >= -1 / c
|
||||
|
||||
where c >= 0 is the power.
|
||||
|
||||
The power transform maps inputs from `[-1/c, inf]` to `[0, inf]`.
|
||||
|
|
|
@ -25,6 +25,7 @@ class ScalarAffine(Bijector):
|
|||
|
||||
.. math::
|
||||
Y = a * X + b
|
||||
|
||||
where a is the scale factor and b is the shift factor.
|
||||
|
||||
Args:
|
||||
|
|
|
@ -2610,6 +2610,7 @@ class StridedSlice(PrimitiveWithInfer):
|
|||
Outputs:
|
||||
Tensor.
|
||||
The output is explained by following example.
|
||||
|
||||
- In the 0th dimension, begin is 1, end is 2, and strides is 1,
|
||||
because :math:`1+1=2\geq2`, the interval is :math:`[1,2)`.
|
||||
Thus, return the element with :math:`index = 1` in 0th dimension, i.e., [[3, 3, 3], [4, 4, 4]].
|
||||
|
@ -2624,7 +2625,7 @@ class StridedSlice(PrimitiveWithInfer):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples
|
||||
Examples:
|
||||
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
||||
... [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
||||
>>> slice = ops.StridedSlice()
|
||||
|
|
Loading…
Reference in New Issue