diff --git a/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.cpp b/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.cpp index 4b06da4457e..d5e7642da00 100644 --- a/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.cpp +++ b/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.cpp @@ -20,7 +20,6 @@ #include #include - using namespace MxBase; using namespace cv::dnn; namespace { @@ -105,21 +104,18 @@ APP_ERROR DPN::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat) APP_ERROR DPN::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase) { uint32_t dataSize=1; - - for (size_t i = 0; i < modelDesc_.inputTensors.size(); ++i) { + for (size_t i=0; i shape = {}; for (size_t j = 0; j < modelDesc_.inputTensors[i].tensorDims.size(); ++j) { shape.push_back((uint32_t)modelDesc_.inputTensors[i].tensorDims[j]); } - for(uint32_t i = 0; i < shape.size(); ++i){ + for(uint32_t i=0; i &inputs, return APP_ERR_OK; } -APP_ERROR DPN::SaveResult(const std::vector &batchImgPaths, const std::vector> &batchClsInfos) +APP_ERROR DPN::SaveResult(const std::vector &batchImgPaths, + const std::vector> &batchClsInfos) { uint32_t batchIndex = 0; for(auto &imgPath: batchImgPaths){ diff --git a/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.h b/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.h index f31cd60c4b1..45d7808e695 100644 --- a/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.h +++ b/model_zoo/official/cv/dpn/infer/mxbase/src/DPN.h @@ -61,5 +61,4 @@ class DPN { double inferCostTimeMilliSec = 0.0; }; - #endif diff --git a/model_zoo/official/cv/dpn/infer/mxbase/src/main.cpp b/model_zoo/official/cv/dpn/infer/mxbase/src/main.cpp index 79078c8ded2..7025c949b6d 100644 --- a/model_zoo/official/cv/dpn/infer/mxbase/src/main.cpp +++ b/model_zoo/official/cv/dpn/infer/mxbase/src/main.cpp @@ -43,7 +43,6 @@ APP_ERROR ScanImages(const std::string &path, std::vector &imgFiles return APP_ERR_OK; } - int main(int argc, char* argv[]) { if (argc <= 1) { @@ -75,7 +74,7 @@ int main(int argc, char* argv[]) auto startTime = std::chrono::high_resolution_clock::now(); int inferImgsCount = 0; LogInfo << "Number of total images load from input data path: " << imgFilePaths.size(); - for(uint32_t i=0; i<=imgFilePaths.size()-BATCH_SIZE; i+=BATCH_SIZE){ + for(uint32_t i = 0; i <= imgFilePaths.size() - BATCH_SIZE; i += BATCH_SIZE){ std::vectorbatchImgFilePaths(imgFilePaths.begin()+i, imgFilePaths.begin()+(i+BATCH_SIZE)); ret = dpn->Process(batchImgFilePaths); if (ret != APP_ERR_OK) { diff --git a/model_zoo/official/cv/dpn/modelarts/train_start.py b/model_zoo/official/cv/dpn/modelarts/train_start.py index 8845e571e41..b6fc6dfff6a 100644 --- a/model_zoo/official/cv/dpn/modelarts/train_start.py +++ b/model_zoo/official/cv/dpn/modelarts/train_start.py @@ -160,7 +160,6 @@ def filter_weight_by_list(origin_dict, param_filter): break def dpn_train(config_args, ma_config): - # create dataset ma_config["training_data"] = config_args.data_path + "/train" ma_config["image_size"] = [config_args.image_size_height, config_args.image_size_width] train_dataset = classification_dataset(ma_config["training_data"], @@ -269,13 +268,12 @@ def dpn_train(config_args, ma_config): return 0 def dpn_export(config_args, ma_config): - # define net backbone = config_args.backbone num_classes = config_args.num_classes net = dpns[backbone](num_classes=num_classes) # load checkpoint - prob_ckpt_list = os.path.join(ma_config["checkpoint_path"] , "dpn*.ckpt") + prob_ckpt_list = os.path.join(ma_config["checkpoint_path"], "dpn*.ckpt") ckpt_list = glob.glob(prob_ckpt_list) if not ckpt_list: print('Freezing model failed!') @@ -299,18 +297,17 @@ def dpn_export(config_args, ma_config): def main(): - # parser arguments config_args = _parse_args() # create local path if not os.path.exists(config_args.data_path): - os.makedirs(config_args.data_path, exist_ok=True) + os.makedirs(config_args.data_path, exist_ok=True) if not os.path.exists(config_args.output_path): - os.makedirs(config_args.output_path, exist_ok=True) + os.makedirs(config_args.output_path, exist_ok=True) ma_config = {} # init context ma_config["checkpoint_path"] = os.path.join(config_args.output_path, config_args.checkpoint_dir) if not os.path.exists(ma_config["checkpoint_path"]): - os.makedirs(ma_config["checkpoint_path"], exist_ok=True) + os.makedirs(ma_config["checkpoint_path"], exist_ok=True) ma_config["device_id"] = get_device_id() context.set_context(mode=context.GRAPH_MODE, device_target=config_args.device_target, save_graphs=False, device_id=ma_config["device_id"])