forked from mindspore-Ecosystem/mindspore
modify again based on retest info
This commit is contained in:
parent
c3211bb9ef
commit
bf41dba0d9
|
@ -20,7 +20,6 @@
|
|||
#include <iostream>
|
||||
#include <opencv2/dnn.hpp>
|
||||
|
||||
|
||||
using namespace MxBase;
|
||||
using namespace cv::dnn;
|
||||
namespace {
|
||||
|
@ -105,21 +104,18 @@ APP_ERROR DPN::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat)
|
|||
APP_ERROR DPN::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase)
|
||||
{
|
||||
uint32_t dataSize=1;
|
||||
|
||||
for (size_t i = 0; i < modelDesc_.inputTensors.size(); ++i) {
|
||||
for (size_t i=0; i<modelDesc_.inputTensors.size(); ++i) {
|
||||
std::vector<uint32_t> shape = {};
|
||||
for (size_t j = 0; j < modelDesc_.inputTensors[i].tensorDims.size(); ++j) {
|
||||
shape.push_back((uint32_t)modelDesc_.inputTensors[i].tensorDims[j]);
|
||||
}
|
||||
for(uint32_t i = 0; i < shape.size(); ++i){
|
||||
for(uint32_t i=0; i<shape.size(); ++i){
|
||||
dataSize *= shape[i];
|
||||
}
|
||||
std::cout<< std::endl;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// mat NCHW to NHWC
|
||||
size_t N=32, H=224, W=224, C=3;
|
||||
size_t N=32,H=224,W=224,C=3;
|
||||
unsigned char *mat_data = new unsigned char[dataSize];
|
||||
uint32_t idx=0;
|
||||
for(size_t n=0; n<N; n++){
|
||||
|
@ -190,7 +186,8 @@ APP_ERROR DPN::PostProcess(const std::vector<MxBase::TensorBase> &inputs,
|
|||
return APP_ERR_OK;
|
||||
}
|
||||
|
||||
APP_ERROR DPN::SaveResult(const std::vector<std::string> &batchImgPaths, const std::vector<std::vector<MxBase::ClassInfo>> &batchClsInfos)
|
||||
APP_ERROR DPN::SaveResult(const std::vector<std::string> &batchImgPaths,
|
||||
const std::vector<std::vector<MxBase::ClassInfo>> &batchClsInfos)
|
||||
{
|
||||
uint32_t batchIndex = 0;
|
||||
for(auto &imgPath: batchImgPaths){
|
||||
|
|
|
@ -61,5 +61,4 @@ class DPN {
|
|||
double inferCostTimeMilliSec = 0.0;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
|
|
@ -43,7 +43,6 @@ APP_ERROR ScanImages(const std::string &path, std::vector<std::string> &imgFiles
|
|||
return APP_ERR_OK;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
if (argc <= 1) {
|
||||
|
@ -75,7 +74,7 @@ int main(int argc, char* argv[])
|
|||
auto startTime = std::chrono::high_resolution_clock::now();
|
||||
int inferImgsCount = 0;
|
||||
LogInfo << "Number of total images load from input data path: " << imgFilePaths.size();
|
||||
for(uint32_t i=0; i<=imgFilePaths.size()-BATCH_SIZE; i+=BATCH_SIZE){
|
||||
for(uint32_t i = 0; i <= imgFilePaths.size() - BATCH_SIZE; i += BATCH_SIZE){
|
||||
std::vector<std::string>batchImgFilePaths(imgFilePaths.begin()+i, imgFilePaths.begin()+(i+BATCH_SIZE));
|
||||
ret = dpn->Process(batchImgFilePaths);
|
||||
if (ret != APP_ERR_OK) {
|
||||
|
|
|
@ -160,7 +160,6 @@ def filter_weight_by_list(origin_dict, param_filter):
|
|||
break
|
||||
|
||||
def dpn_train(config_args, ma_config):
|
||||
# create dataset
|
||||
ma_config["training_data"] = config_args.data_path + "/train"
|
||||
ma_config["image_size"] = [config_args.image_size_height, config_args.image_size_width]
|
||||
train_dataset = classification_dataset(ma_config["training_data"],
|
||||
|
@ -269,13 +268,12 @@ def dpn_train(config_args, ma_config):
|
|||
return 0
|
||||
|
||||
def dpn_export(config_args, ma_config):
|
||||
# define net
|
||||
backbone = config_args.backbone
|
||||
num_classes = config_args.num_classes
|
||||
net = dpns[backbone](num_classes=num_classes)
|
||||
|
||||
# load checkpoint
|
||||
prob_ckpt_list = os.path.join(ma_config["checkpoint_path"] , "dpn*.ckpt")
|
||||
prob_ckpt_list = os.path.join(ma_config["checkpoint_path"], "dpn*.ckpt")
|
||||
ckpt_list = glob.glob(prob_ckpt_list)
|
||||
if not ckpt_list:
|
||||
print('Freezing model failed!')
|
||||
|
@ -299,18 +297,17 @@ def dpn_export(config_args, ma_config):
|
|||
|
||||
|
||||
def main():
|
||||
# parser arguments
|
||||
config_args = _parse_args()
|
||||
# create local path
|
||||
if not os.path.exists(config_args.data_path):
|
||||
os.makedirs(config_args.data_path, exist_ok=True)
|
||||
os.makedirs(config_args.data_path, exist_ok=True)
|
||||
if not os.path.exists(config_args.output_path):
|
||||
os.makedirs(config_args.output_path, exist_ok=True)
|
||||
os.makedirs(config_args.output_path, exist_ok=True)
|
||||
ma_config = {}
|
||||
# init context
|
||||
ma_config["checkpoint_path"] = os.path.join(config_args.output_path, config_args.checkpoint_dir)
|
||||
if not os.path.exists(ma_config["checkpoint_path"]):
|
||||
os.makedirs(ma_config["checkpoint_path"], exist_ok=True)
|
||||
os.makedirs(ma_config["checkpoint_path"], exist_ok=True)
|
||||
ma_config["device_id"] = get_device_id()
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target=config_args.device_target, save_graphs=False, device_id=ma_config["device_id"])
|
||||
|
|
Loading…
Reference in New Issue