forked from mindspore-Ecosystem/mindspore
commit
bc1a1fc8be
|
@ -74,9 +74,15 @@ In `deepmodeling/deepmd-kit/source`:
|
|||
├── script
|
||||
│ ├── eval.sh # evaluation script
|
||||
├── src
|
||||
│ ├── src
|
||||
│ ├── config.py # Parameter config
|
||||
│ ├── moxing_adapter.py # modelarts device configuration
|
||||
│ ├── device_adapter.py # Device Config
|
||||
│ ├── local_adapter.py # local device config
|
||||
│ ├── descriptor.py # descriptor function
|
||||
│ └── network.py # MD simulation architecture
|
||||
└── eval.py # evaluation interface
|
||||
└── default_config.yaml # config file
|
||||
```
|
||||
|
||||
### Training Process
|
||||
|
@ -88,7 +94,7 @@ To Be Done
|
|||
After installing MindSpore via the official website, you can start evaluation as follows:
|
||||
|
||||
```shell
|
||||
python eval.py --dataset_path [DATASET_PATH] --checkpoint_path [CHECKPOINT_PATH]
|
||||
python eval.py --dataset_path [DATASET_PATH] --checkpoint_path [CHECKPOINT_PATH] --baseline_path [BASELINE_PATH]
|
||||
```
|
||||
|
||||
> checkpoint can be trained by using DeePMD-kit, and convert into the ckpt of MindSpore.
|
||||
|
@ -102,6 +108,39 @@ energy: -29944.03
|
|||
atom_energy: -94.38766 -94.294426 -94.39194 -94.70758 -94.51311 -94.457954 ...
|
||||
```
|
||||
|
||||
- running on ModelArts
|
||||
- If you want to train the model on modelarts, you can refer to the [official guidance document] of modelarts (https://support.huaweicloud.com/modelarts/)
|
||||
|
||||
```python
|
||||
# Example of using distributed training dpn on modelarts :
|
||||
# Data set storage method
|
||||
|
||||
# ├── molecular_dynamics_dataset # dataset dir
|
||||
# ├──baseline.npz # baseline dataset
|
||||
# ├──input_tensor.npz # infer input dataset
|
||||
# ├──water_md.ckpt # checkpoint
|
||||
|
||||
# Choose either a (modify yaml file parameters) or b (modelArts create training job to modify parameters) 。
|
||||
# Example of using model inference on modelarts
|
||||
# (1) Place the trained model to the corresponding position of the bucket。
|
||||
# (2) chocie a or b。
|
||||
# a.set "enable_modelarts=True"
|
||||
# set "checkpoint_path=/cache/data/water_md.ckpt"
|
||||
# set "dataset_path=/cache/data/input_tensor.npz"
|
||||
# set "baseline_path=/cache/data/baseline.npz"
|
||||
|
||||
# b. Add "enable_modelarts=True" parameter on the interface of modearts。
|
||||
# Set the parameters required by method a on the modelarts interface
|
||||
# Note: The path parameter does not need to be quoted
|
||||
|
||||
# (3) Set the path of the network configuration file "_config_path=/The path of config in default_config.yaml/"
|
||||
# (4) Set the code path on the modelarts interface "/path/molecular_dynamics"。
|
||||
# (5) Set the model's startup file on the modelarts interface "eval.py" 。
|
||||
# (6) Set the data path of the model on the modelarts interface ".../molecular_dynamics"(choices molecular_dynamics Folder path) ,
|
||||
# The output path of the model "Output file path" and the log path of the model "Job log path" 。
|
||||
# (7) Start model inference。
|
||||
```
|
||||
|
||||
## ModelZoo Homepage
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unlesee you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# url for modelarts
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
# path for local
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: "Ascend"
|
||||
enable_profiling: False
|
||||
|
||||
# ======================================================================================
|
||||
# Eval options
|
||||
checkpoint_path: ""
|
||||
dataset_path: ""
|
||||
|
||||
---
|
||||
# Help description for each configuration
|
||||
enable_modelarts: "Whether training on modelarts default: False"
|
||||
data_url: "Url for modelarts"
|
||||
train_url: "Url for modelarts"
|
||||
data_path: "The location of input data"
|
||||
output_pah: "The location of the output file"
|
||||
device_target: "device id of GPU or Ascend. (Default: None)"
|
||||
enable_profiling: "Whether enable profiling while training default: False"
|
||||
file_name: "CNN&CTC output air name"
|
||||
file_format: "choices [AIR, MINDIR]"
|
||||
ckpt_file: "CNN&CTC ckpt file"
|
||||
checkpoint_path: "Checkpoint file path"
|
||||
dataset_path: "Datasetpath"
|
|
@ -13,25 +13,30 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""eval."""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.network import Network
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.moxing_adapter import moxing_wrapper
|
||||
|
||||
parser = argparse.ArgumentParser(description='MD Simulation')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target=config.device_target)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
def modelarts_pre_process():
|
||||
pass
|
||||
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def model_eval():
|
||||
"""
|
||||
infer network
|
||||
"""
|
||||
# get input data
|
||||
r = np.load(args_opt.dataset_path)
|
||||
r = np.load(config.dataset_path)
|
||||
d_coord, d_nlist, avg, std, atype, nlist = r['d_coord'], r['d_nlist'], r['avg'], r['std'], r['atype'], r['nlist']
|
||||
batch_size = 1
|
||||
atype_tensor = Tensor(atype)
|
||||
|
@ -46,10 +51,14 @@ if __name__ == '__main__':
|
|||
frames = Tensor(frames)
|
||||
# evaluation
|
||||
net = Network()
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
param_dict = load_checkpoint(config.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.to_float(mstype.float32)
|
||||
energy, atom_ener, _ = \
|
||||
net(d_coord_tensor, d_nlist_tensor, frames, avg_tensor, std_tensor, atype_tensor, nlist_tensor)
|
||||
print('energy:', energy)
|
||||
print('atom_energy:', atom_ener)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
model_eval()
|
||||
|
|
|
@ -0,0 +1,130 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License Version 2.0(the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# you may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0#
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS
|
||||
# WITHOUT WARRANT IES OR CONITTONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ====================================================================================
|
||||
|
||||
"""Parse arguments"""
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
from pprint import pprint, pformat
|
||||
import yaml
|
||||
|
||||
|
||||
_config_path = '../../default_config.yaml'
|
||||
|
||||
|
||||
class Config:
|
||||
"""
|
||||
Configuration namespace. Convert dictionary to members
|
||||
"""
|
||||
def __init__(self, cfg_dict):
|
||||
for k, v in cfg_dict.items():
|
||||
if isinstance(v, (list, tuple)):
|
||||
setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v])
|
||||
else:
|
||||
setattr(self, k, Config(v) if isinstance(v, dict) else v)
|
||||
|
||||
def __str__(self):
|
||||
return pformat(self.__dict__)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
def parse_cli_to_yaml(parser, cfg, helper=None, choices=None, cfg_path='default_config.yaml'):
|
||||
"""
|
||||
Parse command line arguments to the configuration according to the default yaml
|
||||
|
||||
Args:
|
||||
parser: Parent parser
|
||||
cfg: Base configuration
|
||||
helper: Helper description
|
||||
cfg_path: Path to the default yaml config
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description='[REPLACE THIS at config.py]',
|
||||
parents=[parser])
|
||||
helper = {} if helper is None else helper
|
||||
choices = {} if choices is None else choices
|
||||
for item in cfg:
|
||||
if not isinstance(cfg[item], list) and not isinstance(cfg[item], dict):
|
||||
help_description = helper[item] if item in helper else 'Please reference to {}'.format(cfg_path)
|
||||
choice = choices[item] if item in choices else None
|
||||
if isinstance(cfg[item], bool):
|
||||
parser.add_argument('--' + item, type=ast.literal_eval, default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
else:
|
||||
parser.add_argument('--' + item, type=type(cfg[item]), default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def parse_yaml(yaml_path):
|
||||
"""
|
||||
Parse the yaml config file
|
||||
|
||||
Args:
|
||||
yaml_path: Path to the yaml config
|
||||
"""
|
||||
with open(yaml_path, 'r') as fin:
|
||||
try:
|
||||
cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader)
|
||||
cfgs = [x for x in cfgs]
|
||||
if len(cfgs) == 1:
|
||||
cfg_helper = {}
|
||||
cfg = cfgs[0]
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 2:
|
||||
cfg, cfg_helper = cfgs
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 3:
|
||||
cfg, cfg_helper, cfg_choices = cfgs
|
||||
else:
|
||||
raise ValueError('At most 3 docs (config description for help, choices) are supported in config yaml')
|
||||
print(cfg_helper)
|
||||
except:
|
||||
raise ValueError('Failed to parse yaml')
|
||||
return cfg, cfg_helper, cfg_choices
|
||||
|
||||
|
||||
def merge(args, cfg):
|
||||
"""
|
||||
Merge the base config from yaml file and command line arguments
|
||||
|
||||
Args:
|
||||
args: command line arguments
|
||||
cfg: Base configuration
|
||||
"""
|
||||
args_var = vars(args)
|
||||
for item in args_var:
|
||||
cfg[item] = args_var[item]
|
||||
return cfg
|
||||
|
||||
|
||||
def get_config():
|
||||
"""
|
||||
Get Config according to the yaml file and cli arguments
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description='default name', add_help=False)
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
parser.add_argument('--config_path', type=str, default=os.path.join(current_dir, _config_path),
|
||||
help='Config file path')
|
||||
path_args, _ = parser.parse_known_args()
|
||||
default, helper, choices = parse_yaml(path_args.config_path)
|
||||
pprint(default)
|
||||
args = parse_cli_to_yaml(parser=parser, cfg=default, helper=helper, choices=choices, cfg_path=path_args.config_path)
|
||||
final_config = merge(args, default)
|
||||
return Config(final_config)
|
||||
|
||||
config = get_config()
|
|
@ -0,0 +1,26 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License Version 2.0(the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# you may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0#
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS
|
||||
# WITHOUT WARRANT IES OR CONITTONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ====================================================================================
|
||||
|
||||
"""Device adapter for ModelArts"""
|
||||
|
||||
from .config import config
|
||||
if config.enable_modelarts:
|
||||
from .moxing_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
else:
|
||||
from .local_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
|
||||
__all__ = [
|
||||
'get_device_id', 'get_device_num', 'get_job_id', 'get_rank_id'
|
||||
]
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License Version 2.0(the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# you may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0#
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS
|
||||
# WITHOUT WARRANT IES OR CONITTONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ====================================================================================
|
||||
|
||||
"""Local adapter"""
|
||||
|
||||
import os
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
return 'Local Job'
|
|
@ -0,0 +1,124 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License Version 2.0(the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# you may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0#
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS
|
||||
# WITHOUT WARRANT IES OR CONITTONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ====================================================================================
|
||||
|
||||
"""Moxing adapter for ModelArts"""
|
||||
|
||||
import os
|
||||
import functools
|
||||
from mindspore import context
|
||||
from .config import config
|
||||
|
||||
|
||||
_global_syn_count = 0
|
||||
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
job_id = os.getenv('JOB_ID')
|
||||
job_id = job_id if job_id != "" else "default"
|
||||
return job_id
|
||||
|
||||
|
||||
def sync_data(from_path, to_path):
|
||||
"""
|
||||
Download data from remote obs to local directory if the first url is remote url and the second one is local
|
||||
Uploca data from local directory to remote obs in contrast
|
||||
"""
|
||||
import moxing as mox
|
||||
import time
|
||||
global _global_syn_count
|
||||
sync_lock = '/tmp/copy_sync.lock' + str(_global_syn_count)
|
||||
_global_syn_count += 1
|
||||
|
||||
# Each server contains 8 devices as most
|
||||
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
|
||||
print('from path: ', from_path)
|
||||
print('to path: ', to_path)
|
||||
mox.file.copy_parallel(from_path, to_path)
|
||||
print('===finished data synchronization===')
|
||||
try:
|
||||
os.mknod(sync_lock)
|
||||
except IOError:
|
||||
pass
|
||||
print('===save flag===')
|
||||
|
||||
while True:
|
||||
if os.path.exists(sync_lock):
|
||||
break
|
||||
time.sleep(1)
|
||||
print('Finish sync data from {} to {}'.format(from_path, to_path))
|
||||
|
||||
|
||||
def moxing_wrapper(pre_process=None, post_process=None):
|
||||
"""
|
||||
Moxing wrapper to download dataset and upload outputs
|
||||
"""
|
||||
def wrapper(run_func):
|
||||
@functools.wraps(run_func)
|
||||
def wrapped_func(*args, **kwargs):
|
||||
# Download data from data_url
|
||||
if config.enable_modelarts:
|
||||
if config.data_url:
|
||||
sync_data(config.data_url, config.data_path)
|
||||
print('Dataset downloaded: ', os.listdir(config.data_path))
|
||||
if config.checkpoint_url:
|
||||
if not os.path.exists(config.load_path):
|
||||
# os.makedirs(config.load_path)
|
||||
print('=' * 20 + 'makedirs')
|
||||
if os.path.isdir(config.load_path):
|
||||
print('=' * 20 + 'makedirs success')
|
||||
else:
|
||||
print('=' * 20 + 'makedirs fail')
|
||||
sync_data(config.checkpoint_url, config.load_path)
|
||||
print('Preload downloaded: ', os.listdir(config.load_path))
|
||||
if config.train_url:
|
||||
sync_data(config.train_url, config.output_path)
|
||||
print('Workspace downloaded: ', os.listdir(config.output_path))
|
||||
|
||||
context.set_context(save_graphs_path=os.path.join(config.output_path, str(get_rank_id())))
|
||||
config.device_num = get_device_num()
|
||||
config.device_id = get_device_id()
|
||||
if not os.path.exists(config.output_path):
|
||||
os.makedirs(config.output_path)
|
||||
|
||||
if pre_process:
|
||||
pre_process()
|
||||
|
||||
run_func(*args, **kwargs)
|
||||
|
||||
# Upload data to train_url
|
||||
if config.enable_modelarts:
|
||||
if post_process:
|
||||
post_process()
|
||||
|
||||
if config.train_url:
|
||||
print('Start to copy output directory')
|
||||
sync_data(config.output_path, config.train_url)
|
||||
return wrapped_func
|
||||
return wrapper
|
Loading…
Reference in New Issue