!42643 modify api format in documents

Merge pull request !42643 from lvmingfu/code_docs_master0922
This commit is contained in:
i-robot 2022-09-23 06:10:00 +00:00 committed by Gitee
commit b835df60ce
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
10 changed files with 24 additions and 24 deletions

View File

@ -548,7 +548,7 @@ mindspore.numpy能够充分利用MindSpore的强大功能实现算子的自
- `ms_function`: 将代码包裹进图模式,用于提高代码运行效率。
- `GradOperation`: 用于自动求导。
- `mindspore.context`: 用于设置运行模式和后端设备等。
- `mindspore.set_context`: 用于设置运行模式和后端设备等。
- `mindspore.nn.Cell`: 用于建立深度学习模型。
使用示例如下:
@ -630,7 +630,7 @@ mindspore.numpy能够充分利用MindSpore的强大功能实现算子的自
...
Tensor(shape=[4], dtype=Float32, value= [ 2.00000000e+00, 2.00000000e+00, 2.00000000e+00, 2.00000000e+00]))
如果要对 `ms_function` 修饰的 `forward` 计算求导,需要提前使用 `context` 设置运算模式为图模式,示例如下:
如果要对 `ms_function` 修饰的 `forward` 计算求导,需要提前使用 `set_context` 设置运算模式为图模式,示例如下:
.. code-block:: python
@ -657,9 +657,9 @@ mindspore.numpy能够充分利用MindSpore的强大功能实现算子的自
更多细节可参考 `API GradOperation <https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.GradOperation.html>`_
- mindspore.context使用示例
- mindspore.set_context使用示例
MindSpore支持多后端运算可以通过 `mindspore.context` 进行设置。`mindspore.numpy` 的多数算子可以使用图模式或者PyNative模式运行也可以运行在CPUCPU或者Ascend等多种后端设备上。
MindSpore支持多后端运算可以通过 `mindspore.set_context` 进行设置。`mindspore.numpy` 的多数算子可以使用图模式或者PyNative模式运行也可以运行在CPUCPU或者Ascend等多种后端设备上。
.. code-block:: python

View File

@ -15,7 +15,7 @@
- **name** (str) - 参数的名称。默认值None。如果一个网络中存在两个及以上相同名称的 `Parameter` 对象,在定义时将提示设置一个特有的名称。
- **requires_grad** (bool) - 是否需要微分求梯度。默认值True。
- **layerwise_parallel** (bool) - 在数据/混合并行模式下,`layerwise_parallel` 配置为True时参数广播和梯度聚合时会过滤掉该参数。默认值False。
- **parallel_optimizer** (bool) - 用于在 `semi_auto_parallel``auto_parallel` 并行模式下区分参数是否进行优化器切分。仅在 `mindspore.context.set_auto_parallel_context()` 并行配置模块中设置 `enable_parallel_optimizer` 启用优化器并行时有效。默认值True。
- **parallel_optimizer** (bool) - 用于在 `semi_auto_parallel``auto_parallel` 并行模式下区分参数是否进行优化器切分。仅在 `mindspore.set_auto_parallel_context()` 并行配置模块中设置 `enable_parallel_optimizer` 启用优化器并行时有效。默认值True。
.. py:method:: cache_enable
:property:
@ -102,7 +102,7 @@
获取此参数的优化器并行状态bool
用于在 `AUTO_PARALLEL``SEMI_AUTO_PARALLEL` 模式下过滤权重切分操作。当在 `mindspore.context.set_auto_parallel_context()` 中启用优化器并行时,它才有效。
用于在 `AUTO_PARALLEL``SEMI_AUTO_PARALLEL` 模式下过滤权重切分操作。当在 `mindspore.set_auto_parallel_context()` 中启用优化器并行时,它才有效。
.. py:method:: parallel_optimizer_comm_recompute
:property:

View File

@ -86,7 +86,7 @@ mindspore.set_context
- **enable_dump** (bool) - 此参数已弃用,将在下一版本中删除。
- **save_dump_path** (str) - 此参数已弃用,将在下一版本中删除。
- **print_file_path** (str) - 该路径用于保存打印数据。使用时 :class:`mindspore.ops.Print` 可以打印输入的张量或字符串信息,使用方法 :func:`mindspore.parse_print` 解析保存的文件。如果设置了此参数,打印数据保存到文件,未设置将显示到屏幕。如果保存的文件已经存在,则将添加时间戳后缀到文件中。将数据保存到文件解决了屏幕打印中的数据丢失问题,如果未设置,将报告错误:"prompt to set the upper absolute path"。
- **env_config_path** (str) - 通过 `context.set_context(env_config_path="./mindspore_config.json")` 来设置MindSpore环境配置文件路径。
- **env_config_path** (str) - 通过 `mindspore.set_context(env_config_path="./mindspore_config.json")` 来设置MindSpore环境配置文件路径。
配置Running Data Recorder
@ -109,7 +109,7 @@ mindspore.set_context
- **pynative_synchronize** (bool) - 表示是否在PyNative模式下启动设备同步执行。默认值False。设置为False时将在设备上异步执行算子。当算子执行出错时将无法定位特定错误脚本代码的位置。当设置为True时将在设备上同步执行算子。这将降低程序的执行性能。此时当算子执行出错时可以根据错误的调用栈来定位错误脚本代码的位置。
- **mode** (int) - 表示在GRAPH_MODE(0)或PYNATIVE_MODE(1)模式中的运行。默认值GRAPH_MODE(0)。GRAPH_MODE或PYNATIVE_MODE可以通过 `mode` 属性设置两种模式都支持所有后端。默认模式为GRAPH_MODE。
- **enable_graph_kernel** (bool) - 表示开启图算融合去优化网络执行性能。默认值False。如果 `enable_graph_kernel` 设置为True则可以启用加速。有关图算融合的详细信息请查看 `使能图算融合 <https://www.mindspore.cn/docs/zh-CN/master/design/graph_fusion_engine.html>`_
- **graph_kernel_flags** (str) - 图算融合的优化选项当与enable_graph_kernel冲突时它的优先级更高。其仅适用于有经验的用户。例如context.set_context(graph_kernel_flags="--opt_level=2 --dump_as_text")。一些常用选项:
- **graph_kernel_flags** (str) - 图算融合的优化选项当与enable_graph_kernel冲突时它的优先级更高。其仅适用于有经验的用户。例如mindspore.set_context(graph_kernel_flags="--opt_level=2 --dump_as_text")。一些常用选项:
- **opt_level**设置优化级别。默认值2。当opt_level的值大于0时启动图算融合。可选值包括

View File

@ -5,7 +5,7 @@ mindspore.ops.print\_
将输入数据进行打印输出。
默认打印在屏幕上。也可以保存在文件中,通过 `context` 设置 `print_file_path` 参数。一旦设置,输出将保存在指定文件中。通过函数 :func:`mindspore.parse_print` 可以重新加载数据。获取更多信息,请查看 :func:`mindspore.context.set_context` 和 :func:`mindspore.parse_print`
默认打印在屏幕上。也可以保存在文件中,通过 `context` 设置 `print_file_path` 参数。一旦设置,输出将保存在指定文件中。通过函数 :func:`mindspore.parse_print` 可以重新加载数据。获取更多信息,请查看 :func:`mindspore.set_context` 和 :func:`mindspore.parse_print`
.. note::
在PyNative模式下请使用Python print函数。在Ascend平台上的Graph模式下bool、int和float将被转换为Tensor进行打印str保持不变。

View File

@ -553,7 +553,7 @@ Since `mindspore.numpy` directly wraps MindSpore tensors and operators, it has a
- `ms_function`: for running codes in static graph mode for better efficiency.
- `GradOperation`: for automatic gradient computation.
- `mindspore.context`: for `mindspore.numpy` execution management.
- `mindspore.set_context`: for `mindspore.numpy` execution management.
- `mindspore.nn.Cell`: for using `mindspore.numpy` interfaces in MindSpore Deep Learning Models.
The following are examples:
@ -663,9 +663,9 @@ The following are examples:
For more details, see `API GradOperation <https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.GradOperation.html>`_ .
- Use mindspore.context to control execution mode
- Use mindspore.set_context to control execution mode
Most functions in `mindspore.numpy` can run in Graph Mode and PyNative Mode, and can run on CPU, GPU and Ascend. Like MindSpore, users can manage the execution mode using `mindspore.context`
Most functions in `mindspore.numpy` can run in Graph Mode and PyNative Mode, and can run on CPU, GPU and Ascend. Like MindSpore, users can manage the execution mode using `mindspore.set_context`
.. code-block:: python

View File

@ -145,7 +145,7 @@ class Parameter(Tensor_):
layerwise_parallel (bool): When layerwise_parallel is true in data/hybrid parallel mode,
broadcast and gradients communication would not be applied to parameters. Default: False.
parallel_optimizer (bool): It is used to filter the weight shard operation in semi auto or auto parallel
mode. It works only when enable parallel optimizer in `mindspore.context.set_auto_parallel_context()`.
mode. It works only when enable parallel optimizer in `mindspore.set_auto_parallel_context()`.
Default: True.
Examples:
@ -509,7 +509,7 @@ class Parameter(Tensor_):
Get the optimizer parallel status(bool) of the parameter.
It is used to filter the weight shard operation in `AUTO_PARALLEL` and `SEMI_AUTO_PARALLEL` mode. It works only
when enable parallel optimizer in `mindspore.context.set_auto_parallel_context()`.
when enable parallel optimizer in `mindspore.set_auto_parallel_context()`.
"""
return self.param_info.parallel_optimizer

View File

@ -4760,8 +4760,8 @@ class Tensor(Tensor_):
Examples:
>>> import numpy as np
>>> from mindspore import Tensor, context
>>> context.set_context(device_target="CPU")
>>> from mindspore import Tensor, set_context
>>> set_context(device_target="CPU")
>>> a = Tensor(np.array([[1, 2], [-4, -5], [2, 1]]).astype(np.float32))
>>> s, u, v = a.svd(full_matrices=True, compute_uv=True)
>>> print(s)

View File

@ -463,7 +463,7 @@ def set_auto_parallel_context(**kwargs):
Note:
Attribute name is required for setting attributes.
If a program has tasks on different parallel modes, before setting a new parallel mode for the
next task, interface mindspore.context.reset_auto_parallel_context() should be called to reset
next task, interface mindspore.reset_auto_parallel_context() should be called to reset
the configuration.
Setting or changing parallel modes must be called before creating any Initializer, otherwise,
it may have RuntimeError when compiling the network.
@ -549,7 +549,7 @@ def set_auto_parallel_context(**kwargs):
configure. The configure provides more detailed behavior control about parallel training
when parallel optimizer is enabled. Currently it supports the key `gradient_accumulation_shard`.
The configure will be effective when we use
context.set_auto_parallel_context(enable_parallel_optimizer=True).
mindspore.set_auto_parallel_context(enable_parallel_optimizer=True).
It supports the following keys.
- gradient_accumulation_shard(bool): If true, the accumulation gradient parameters will be
@ -796,7 +796,7 @@ def set_context(**kwargs):
solves the problem of data loss in screen printing when a large amount of data is generated.
If it is not set, an error will be reported: prompt to set the upper absolute path.
env_config_path (str): Config path for DFX.
Through context.set_context(env_config_path="./mindspore_config.json")
Through mindspore.set_context(env_config_path="./mindspore_config.json")
configure RDR:
@ -843,7 +843,7 @@ def set_context(**kwargs):
graph_kernel_flags (str):
Optimization options of graph kernel fusion, and the priority is higher when it conflicts
with enable_graph_kernel. Only for experienced users.
For example, context.set_context(graph_kernel_flags="--opt_level=2 --dump_as_text"). Some general options:
For example, mindspore.set_context(graph_kernel_flags="--opt_level=2 --dump_as_text"). Some general options:
- opt_level: Set the optimization level.
Default: 2. Graph kernel fusion can be enabled equivalently by setting opt_level greater than 0.

View File

@ -54,9 +54,9 @@ def svd(a, full_matrices=False, compute_uv=True):
Examples:
>>> import numpy as np
>>> from mindspore import Tensor, context
>>> from mindspore import Tensor, set_context
>>> from mindspore import ops
>>> context.set_context(device_target="CPU")
>>> set_context(device_target="CPU")
>>> a = Tensor(np.array([[1, 2], [-4, -5], [2, 1]]).astype(np.float32))
>>> s, u, v = ops.svd(a, full_matrices=True, compute_uv=True)
>>> print(s)

View File

@ -95,9 +95,9 @@ class Svd(Primitive):
Examples:
>>> import numpy as np
>>> from mindspore import Tensor, context
>>> from mindspore import Tensor, set_context
>>> from mindspore.ops.operations import linalg_ops as linalg
>>> context.set_context(device_target="CPU")
>>> set_context(device_target="CPU")
>>> svd = linalg.Svd(full_matrices=True, compute_uv=True)
>>> a = Tensor(np.array([[1, 2], [-4, -5], [2, 1]]).astype(np.float32))
>>> s, u, v = svd(a)