!16155 add GPU platform for Mod, SpaceToDepth and DepthToSpace operators.

From: @wangshuide2020
Reviewed-by: @liangchenghui,@wuxuejian
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2021-05-10 20:07:31 +08:00 committed by Gitee
commit b7392a2850
2 changed files with 5 additions and 4 deletions

View File

@ -4087,7 +4087,7 @@ class SpaceToDepth(PrimitiveWithInfer):
ValueError: If length of shape of `x` is not equal to 4.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> x = Tensor(np.random.rand(1,3,2,2), mindspore.float32)
@ -4154,7 +4154,7 @@ class DepthToSpace(PrimitiveWithInfer):
ValueError: If length of shape of `x` is not equal to 4.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU``
Examples:
>>> x = Tensor(np.random.rand(1, 12, 1, 1), mindspore.float32)

View File

@ -2421,7 +2421,7 @@ class Mod(_MathBinaryOp):
ValueError: When `input_x` and `input_y` are not the same dtype.
Supported Platforms:
``Ascend`` ``CPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
@ -2482,7 +2482,8 @@ class Floor(PrimitiveWithInfer):
class FloorMod(_MathBinaryOp):
"""
Computes the remainder of division element-wise.
Computes the remainder of division element-wise. It's a flooring divide.
E.g. :math:`floor(x / y) * y + mod(x, y) = x`.
Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
The inputs must be two tensors or one tensor and one scalar.