forked from mindspore-Ecosystem/mindspore
!9402 [GPU] Unique op int64 support
From: @tom__chen Reviewed-by: @robingrosman,@mikef Signed-off-by: @robingrosman
This commit is contained in:
commit
b5269d6bd4
|
@ -29,5 +29,8 @@ MS_REG_GPU_KERNEL_TWO(
|
|||
MS_REG_GPU_KERNEL_TWO(
|
||||
Unique, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
UniqueGpuKernel, int, int)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
UniqueGpuKernel, int64_t, int64_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -72,3 +72,5 @@ template int CalUnique<half, int>(const half *input, int num_elements, int *inpu
|
|||
half *output, int *index, cudaStream_t cuda_stream);
|
||||
template int CalUnique<int, int>(const int *input, int num_elements, int *input_index, int *sorted_index,
|
||||
int *output, int *index, cudaStream_t cuda_stream);
|
||||
template int CalUnique<int64_t, int64_t>(const int64_t *input, int num_elements, int64_t *input_index,
|
||||
int64_t *sorted_index, int64_t *output, int64_t *index, cudaStream_t cuda_stream);
|
||||
|
|
|
@ -267,3 +267,65 @@ def test_unique_dynamic():
|
|||
assert (x_idx2.asnumpy() == expt_index2).all()
|
||||
for i, out in enumerate(x_split2):
|
||||
assert (out.asnumpy() == expt_split2[i]).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_1d_int64():
|
||||
x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5]).astype(np.int64))
|
||||
exp_output = np.array([1, 2, 3, 4, 5]).astype(np.int64)
|
||||
exp_idx = np.array([3, 4, 0, 1, 2, 2, 3, 4]).astype(np.int64)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = NetUnique()
|
||||
x_unique, x_idx = net(x)
|
||||
print(x_unique)
|
||||
print(x_idx)
|
||||
assert (x_unique.asnumpy() == exp_output).all()
|
||||
assert (x_idx.asnumpy() == exp_idx).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_1d_sorted_int64():
|
||||
x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.int64))
|
||||
exp_output = np.array([1, 2, 4, 7, 8]).astype(np.int64)
|
||||
exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int64)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = NetUnique()
|
||||
x_unique, x_idx = net(x)
|
||||
assert (x_unique.asnumpy() == exp_output).all()
|
||||
assert (x_idx.asnumpy() == exp_idx).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_zeros_int64():
|
||||
x = Tensor(np.zeros(1000).astype(np.int64))
|
||||
exp_output = np.zeros(1).astype(np.int64)
|
||||
exp_idx = np.zeros(1000).astype(np.int64)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = NetUnique()
|
||||
x_unique, x_idx = net(x)
|
||||
assert (x_unique.asnumpy() == exp_output).all()
|
||||
assert (x_idx.asnumpy() == exp_idx).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_large_int64():
|
||||
x_np1 = np.arange(100)
|
||||
x_np2 = np.arange(100, 200)
|
||||
x_np3 = np.arange(200, 300)
|
||||
x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3))
|
||||
x = Tensor(x_np.astype(np.int64))
|
||||
exp_output = np.arange(300).astype(np.int64)
|
||||
exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int64)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = NetUnique()
|
||||
x_unique, x_idx = net(x)
|
||||
assert (x_unique.asnumpy() == exp_output).all()
|
||||
assert (x_idx.asnumpy() == exp_idx).all()
|
||||
|
|
Loading…
Reference in New Issue