forked from mindspore-Ecosystem/mindspore
!17239 add parallel gathernd test case
From: @hanyang001 Reviewed-by: @stsuteng,@yangzhenzhang Signed-off-by: @stsuteng
This commit is contained in:
commit
b45b63fc58
|
@ -0,0 +1,376 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
class Dataset(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(Dataset, self).__init__(size=length)
|
||||
self.predict = predict
|
||||
self.label = label
|
||||
self.index = 0
|
||||
self.length = length
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.index >= self.length:
|
||||
raise StopIteration
|
||||
self.index += 1
|
||||
return self.predict, self.label
|
||||
|
||||
def reset(self):
|
||||
self.index = 0
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.w1 = Parameter(Tensor(np.ones(w1_shape), dtype=ms.float32), "w1")
|
||||
self.indices = Tensor(np.ones(indices_shape), dtype=ms.int32)
|
||||
self.gathernd = P.GatherNd().shard(strategy2)
|
||||
self.relu = P.ReLU().shard(strategy3)
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.w1)
|
||||
out = self.gathernd(out, self.indices)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class Net2(Cell):
|
||||
def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.w1 = Parameter(Tensor(np.ones(w1_shape), dtype=ms.float32), "w1")
|
||||
self.indices = Tensor(np.ones(indices_shape), dtype=ms.int32)
|
||||
self.gathernd = P.GatherNd().shard(strategy2)
|
||||
self.relu = P.ReLU().shard(strategy3)
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.w1)
|
||||
out = self.gathernd(out, self.indices)
|
||||
return out
|
||||
|
||||
|
||||
class Net3(Cell):
|
||||
def __init__(self, w1_shape, indices_shape, strategy1=None, strategy2=None, strategy3=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.w1 = Parameter(Tensor(np.ones(w1_shape), dtype=ms.float32), "w1")
|
||||
self.indices = Tensor(np.ones(indices_shape), dtype=ms.int32)
|
||||
self.gathernd = P.GatherNd().shard(strategy2)
|
||||
self.relu = P.ReLU().shard(strategy3)
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.gathernd(x, self.indices)
|
||||
out = self.relu(out)
|
||||
out = self.mul(out, self.w1)
|
||||
return out
|
||||
|
||||
|
||||
# full_batch = false
|
||||
_x = Tensor(np.ones([1, 16, 32]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([1, 16, 32]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(save_graphs=True)
|
||||
learning_rate = 0.1
|
||||
momentum = 0.9
|
||||
epoch_size = 2
|
||||
dataset = Dataset(_x, _b)
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, optimizer=opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_gathernd_data_parallel():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel2():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel3():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel4():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel5():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel6():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel7():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1, 1, 1), (8, 1, 1, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel8():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1, 1), (8, 1, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_data_parallel9():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (8, 1, 1, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel2():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel3():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel4():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel5():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel6():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net2(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel7():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
strategy1 = ((8, 1, 1, 1, 1), (8, 1, 1, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel8():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
strategy1 = ((8, 1, 1, 1), (8, 1, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_model_parallel9():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 4, 2]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (2, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net3(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
def test_gathernd_auto_parallel():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 1]
|
||||
net = Net(w1_shape, indices_shape)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_auto_parallel2():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 2]
|
||||
net = Net(w1_shape, indices_shape)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_auto_parallel3():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
net = Net(w1_shape, indices_shape)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_strategy_error():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((2, 1, 1), (1, 2, 2, 1))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_gathernd_strategy_error2():
|
||||
context.set_auto_parallel_context(
|
||||
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
w1_shape = [8, 16, 32]
|
||||
indices_shape = [8, 4, 2, 3]
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (1, 2, 2, 2))
|
||||
strategy3 = ((8, 1, 1),)
|
||||
net = Net(w1_shape, indices_shape, strategy1, strategy2, strategy3)
|
||||
with pytest.raises(RuntimeError):
|
||||
compile_net(net)
|
Loading…
Reference in New Issue