add init code

This commit is contained in:
xulei2020 2020-08-25 18:13:32 +08:00
parent 47ca1e3128
commit b356211413
14 changed files with 1423 additions and 4 deletions

View File

@ -116,7 +116,7 @@ checkopts()
DEBUG_MODE="on"
;;
n)
if [[ "X$OPTARG" == "Xoff" || "X$OPTARG" == "Xlite" || "X$OPTARG" == "Xfull" ]]; then
if [[ "X$OPTARG" == "Xoff" || "X$OPTARG" == "Xlite" || "X$OPTARG" == "Xfull" || "X$OPTARG" == "Xlite_cv" ]]; then
COMPILE_MINDDATA_LITE="$OPTARG"
else
echo "Invalid value ${OPTARG} for option -n"

View File

@ -40,6 +40,18 @@ if (BUILD_MINDDATA STREQUAL "lite")
endif ()
endif ()
if (BUILD_MINDDATA STREQUAL "lite_cv")
install(DIRECTORY ${TOP_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image/lite_cv DESTINATION ${INC_DIR} COMPONENT ${COMPONENT_NAME} FILES_MATCHING PATTERN "*.h")
if (PLATFORM_ARM64)
install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME})
elseif (PLATFORM_ARM32)
install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME})
else ()
install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR_RUN_X86} COMPONENT ${RUN_X86_COMPONENT_NAME})
endif ()
endif ()
if (PLATFORM_ARM64)
install(FILES ${TOP_DIR}/mindspore/lite/build/src/libmindspore-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME})
install(FILES ${TOP_DIR}/mindspore/core/ir/dtype/type_id.h DESTINATION ${INC_DIR}/ir/dtype COMPONENT ${COMPONENT_NAME})

View File

@ -43,6 +43,8 @@ include_directories(${CMAKE_BINARY_DIR}) # for protobuf generated .h
include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/mindrecord/include)
include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include)
include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image)
######################################################################
####################### Flags ########################################
@ -94,6 +96,7 @@ set(submodules
$<TARGET_OBJECTS:utils>
$<TARGET_OBJECTS:kernels>
$<TARGET_OBJECTS:kernels-image>
$<TARGET_OBJECTS:lite-cv>
$<TARGET_OBJECTS:kernels-data>
$<TARGET_OBJECTS:cpp-API>
$<TARGET_OBJECTS:kernels-soft-dvpp-image>

View File

@ -1,6 +1,7 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_subdirectory(soft_dvpp)
add_subdirectory(lite_cv)
add_library(kernels-image OBJECT
affine_op.cc
auto_contrast_op.cc
@ -49,4 +50,4 @@ add_library(kernels-image OBJECT
random_resize_with_bbox_op.cc
random_color_op.cc
)
add_dependencies(kernels-image kernels-soft-dvpp-image)
add_dependencies(kernels-image kernels-soft-dvpp-image )

View File

@ -0,0 +1,5 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_library(lite-cv OBJECT
image_process.cc
lite_mat.cc)

View File

@ -0,0 +1,604 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lite_cv/image_process.h"
#include <string.h>
#include <math.h>
#include <vector>
#include <algorithm>
namespace mindspore {
namespace dataset {
static inline void InitBilinearWeight(int *data_ptr, int16_t *weight_ptr, double scale, int dst_length, int src_length,
int a) {
const int RESIZE_SCALE = 1 << 11;
if (data_ptr == nullptr || weight_ptr == nullptr) {
return;
}
int *data_start_ptr = data_ptr;
int16_t *weight_start_ptr = weight_ptr;
for (unsigned int i = 0; i < dst_length; i++) {
float src_f_x = static_cast<float>((i + 0.5) * scale - 0.5);
int src_u_x = static_cast<int>(floor(src_f_x));
src_f_x -= src_u_x;
if (src_u_x < 0) {
src_u_x = 0;
src_f_x = 0.0f;
}
if (src_u_x >= src_length - 1) {
src_u_x = src_length - 2;
src_f_x = 1.0f;
}
data_start_ptr[i] = src_u_x * a;
int16_t t0 = INT16_CAST((1.0f - src_f_x) * RESIZE_SCALE);
int16_t t1 = INT16_CAST(src_f_x * RESIZE_SCALE);
weight_start_ptr[i * 2] = t0;
weight_start_ptr[i * 2 + 1] = t1;
}
}
static void ResizeBilinear3C(const unsigned char *src, int src_width, int src_height, unsigned char *dst, int dst_width,
int dst_height) {
double scale_width = static_cast<double>(src_width) / dst_width;
double scale_height = static_cast<double>(src_height) / dst_height;
int *data_buf = new int[2 * dst_width + 2 * dst_height];
int *x_offset = data_buf;
int *y_offset = data_buf + dst_width;
int16_t *x_weight = reinterpret_cast<int16_t *>(data_buf + dst_width + dst_height);
int16_t *y_weight = reinterpret_cast<int16_t *>(x_weight + dst_width);
InitBilinearWeight(x_offset, x_weight, scale_width, dst_width, src_width, 3);
InitBilinearWeight(y_offset, y_weight, scale_height, dst_height, src_height, 1);
LiteMat x_tmp_buf0(dst_width * 3 + 1, LDataType::UINT16);
LiteMat x_tmp_buf1(dst_width * 3 + 1, LDataType::UINT16);
int16_t *row0_ptr = reinterpret_cast<int16_t *>(x_tmp_buf0.data_ptr_);
int16_t *row1_ptr = reinterpret_cast<int16_t *>(x_tmp_buf1.data_ptr_);
int prev_height = -2;
for (int y = 0; y < dst_height; y++) {
int y_span = y_offset[y];
if (y_span == prev_height) {
} else if (y_span == prev_height + 1) {
int16_t *tmp = row0_ptr;
row0_ptr = row1_ptr;
row1_ptr = tmp;
const unsigned char *src_start = src + 3 * src_width * (y_span + 1);
const int16_t *x_weight_p = x_weight;
int16_t *row1_ptr1 = row1_ptr;
for (int x = 0; x < dst_width; x++) {
const unsigned char *src_start_p = src_start + x_offset[x];
row1_ptr1[0] = (src_start_p[0] * x_weight_p[0] + src_start_p[3] * x_weight_p[1]) >> 4;
row1_ptr1[1] = (src_start_p[1] * x_weight_p[0] + src_start_p[4] * x_weight_p[1]) >> 4;
row1_ptr1[2] = (src_start_p[2] * x_weight_p[0] + src_start_p[5] * x_weight_p[1]) >> 4;
x_weight_p += 2;
row1_ptr1 += 3;
}
} else {
const unsigned char *src0 = src + 3 * src_width * (y_span);
const unsigned char *src1 = src + 3 * src_width * (y_span + 1);
const int16_t *x_weight_ptr = x_weight;
int16_t *row0_ptr0 = row0_ptr;
int16_t *row1_ptr1 = row1_ptr;
for (int x = 0; x < dst_width; x++) {
const unsigned char *src0_ptr = src0 + x_offset[x];
const unsigned char *src1_ptr = src1 + x_offset[x];
for (int c = 0; c < 3; c++) {
row0_ptr0[c] = (src0_ptr[c] * x_weight_ptr[0] + src0_ptr[c + 3] * x_weight_ptr[1]) >> 4;
row1_ptr1[c] = (src1_ptr[c] * x_weight_ptr[0] + src1_ptr[c + 3] * x_weight_ptr[1]) >> 4;
}
x_weight_ptr += 2;
row0_ptr0 += 3;
row1_ptr1 += 3;
}
}
prev_height = y_span;
int16_t *row0_ptr0 = row0_ptr;
int16_t *row1_ptr1 = row1_ptr;
unsigned char *dst_ptr = dst + dst_width * 3 * (y);
for (int k = 0; k < dst_width * 3; k++) {
int16_t t0 = (int16_t)((y_weight[0] * (int16_t)(*row0_ptr0++)) >> 16);
int16_t t1 = (int16_t)((y_weight[1] * (int16_t)(*row1_ptr1++)) >> 16);
*dst_ptr++ = (unsigned char)((t0 + t1 + 2) >> 2);
}
y_weight += 2;
}
delete[] data_buf;
}
static void ResizeBilinear1C(const unsigned char *src, int src_width, int src_height, unsigned char *dst, int dst_width,
int dst_height) {
double scale_width = static_cast<double>(src_width) / dst_width;
double scale_height = static_cast<double>(src_height) / dst_height;
int *data_buf = new int[2 * dst_width + 2 * dst_height];
int *x_offset = data_buf;
int *y_offset = data_buf + dst_width;
int16_t *x_weight = reinterpret_cast<int16_t *>(data_buf + dst_width + dst_height);
int16_t *y_weight = reinterpret_cast<int16_t *>(x_weight + dst_width);
InitBilinearWeight(x_offset, x_weight, scale_width, dst_width, src_width, 1);
InitBilinearWeight(y_offset, y_weight, scale_height, dst_height, src_height, 1);
LiteMat x_tmp_buf0(dst_width, LDataType::UINT16);
LiteMat x_tmp_buf1(dst_width, LDataType::UINT16);
int16_t *row0_ptr = reinterpret_cast<int16_t *>(x_tmp_buf0.data_ptr_);
int16_t *row1_ptr = reinterpret_cast<int16_t *>(x_tmp_buf1.data_ptr_);
int prev_height = -2;
for (int y = 0; y < dst_height; y++) {
int y_span = y_offset[y];
if (y_span == prev_height) {
} else if (y_span == prev_height + 1) {
int16_t *tmp = row0_ptr;
row0_ptr = row1_ptr;
row1_ptr = tmp;
const unsigned char *src_start = src + src_width * (y_span + 1);
const int16_t *x_weight_p = x_weight;
int16_t *row1_ptr1 = row1_ptr;
for (int x = 0; x < dst_width; x++) {
const unsigned char *src_start_p = src_start + x_offset[x];
row1_ptr1[x] = (src_start_p[0] * x_weight_p[0] + src_start_p[3] * x_weight_p[1]) >> 4;
x_weight_p += 2;
}
} else {
const unsigned char *src0 = src + src_width * (y_span);
const unsigned char *src1 = src + src_width * (y_span + 1);
const int16_t *x_weight_ptr = x_weight;
int16_t *row0_ptr0 = row0_ptr;
int16_t *row1_ptr1 = row1_ptr;
for (int x = 0; x < dst_width; x++) {
const unsigned char *src0_ptr = src0 + x_offset[x];
const unsigned char *src1_ptr = src1 + x_offset[x];
row0_ptr0[x] = (src0_ptr[0] * x_weight_ptr[0] + src0_ptr[3] * x_weight_ptr[1]) >> 4;
row1_ptr1[x] = (src1_ptr[0] * x_weight_ptr[0] + src1_ptr[3] * x_weight_ptr[1]) >> 4;
x_weight_ptr += 2;
}
}
prev_height = y_span;
int16_t *row0_ptr0 = row0_ptr;
int16_t *row1_ptr1 = row1_ptr;
unsigned char *dst_ptr = dst + dst_width * (y);
for (int k = 0; k < dst_width; k++) {
int16_t t0 = (int16_t)((y_weight[0] * (int16_t)(*row0_ptr0++)) >> 16);
int16_t t1 = (int16_t)((y_weight[1] * (int16_t)(*row1_ptr1++)) >> 16);
*dst_ptr++ = (unsigned char)((t0 + t1 + 2) >> 2);
}
y_weight += 2;
}
delete[] data_buf;
}
bool ResizeBilinear(const LiteMat &src, LiteMat &dst, int dst_w, int dst_h) {
if (src.data_type_ != LDataType::UINT8) {
return false;
}
if (src.channel_ == 3) {
(void)dst.Init(dst_w, dst_h, 3, LDataType::UINT8);
const unsigned char *src_start_p = src;
unsigned char *dst_start_p = dst;
(void)ResizeBilinear3C(src_start_p, src.width_, src.height_, dst_start_p, dst_w, dst_h);
} else if (src.channel_ == 1) {
(void)dst.Init(dst_w, dst_h, 1, LDataType::UINT8);
const unsigned char *src_start_p = src;
unsigned char *dst_start_p = dst;
(void)ResizeBilinear1C(src_start_p, src.width_, src.height_, dst_start_p, dst_w, dst_h);
} else {
return false;
}
return true;
}
static bool ConvertRGBAToBGR(const unsigned char *data, LDataType data_type, int w, int h, LiteMat &mat) {
if (data_type == LDataType::UINT8) {
mat.Init(w, h, 3, LDataType::UINT8);
unsigned char *ptr = mat;
const unsigned char *data_ptr = data;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
ptr[0] = data_ptr[2];
ptr[1] = data_ptr[1];
ptr[2] = data_ptr[0];
ptr += 3;
data_ptr += 4;
}
}
} else {
return false;
}
return true;
}
static bool ConvertRGBAToGRAY(const unsigned char *data, LDataType data_type, int w, int h, LiteMat &mat) {
if (data_type == LDataType::UINT8) {
mat.Init(w, h, 1, LDataType::UINT8);
if (mat.IsEmpty()) {
return false;
}
unsigned char *ptr = mat;
const unsigned char *data_ptr = data;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
*ptr = (data_ptr[2] * B2GRAY + data_ptr[1] * G2GRAY + data_ptr[0] * R2GRAY) >> GRAYSHIFT;
ptr++;
data_ptr += 4;
}
}
} else {
return false;
}
return true;
}
bool InitFromPixel(const unsigned char *data, LPixelType pixel_type, LDataType data_type, int w, int h, LiteMat &m) {
if (pixel_type == LPixelType::RGBA2BGR) {
return ConvertRGBAToBGR(data, data_type, w, h, m);
} else if (pixel_type == LPixelType::RGBA2GRAY) {
return ConvertRGBAToGRAY(data, data_type, w, h, m);
} else {
return false;
}
return true;
}
bool ConvertTo(const LiteMat &src, LiteMat &dst, double scale) {
if (src.data_type_ != LDataType::UINT8) {
return false;
}
(void)dst.Init(src.width_, src.height_, src.channel_, LDataType::FLOAT32);
const unsigned char *src_start_p = src;
float *dst_start_p = dst;
for (int h = 0; h < src.height_; h++) {
for (int w = 0; w < src.width_; w++) {
for (int c = 0; c < src.channel_; c++) {
int index = (h * src.width_ + w) * src.channel_;
dst_start_p[index + c] = (static_cast<float>(src_start_p[index + c] * scale));
}
}
}
return true;
}
template <typename T>
static void CropInternal(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h) {
int dst_h = h;
int dst_w = w;
int dst_c = src.channel_;
dst.Init(dst_w, dst_h, dst_c, src.data_type_);
const T *src_start_p = src;
T *dst_start_p = dst;
for (int i_h = 0; i_h < dst_h; i_h++) {
const T *src_index_p = src_start_p + (y + i_h) * src.width_ * dst_c + x * dst_c;
T *dst_index_p = dst_start_p + i_h * dst_w * dst_c;
(void)memcpy(dst_index_p, src_index_p, dst_w * dst_c * sizeof(T));
}
}
bool Crop(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h) {
if (y < 0 || y + h > src.height_ || x < 0 || x + w > src.width_) {
return false;
}
if (src.data_type_ == LDataType::UINT8) {
CropInternal<uint8_t>(src, dst, x, y, w, h);
} else if (src.data_type_ == LDataType::FLOAT32) {
CropInternal<float>(src, dst, x, y, w, h);
} else {
return false;
}
return true;
}
bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, float *mean, float *norm) {
if (src.data_type_ != LDataType::FLOAT32) {
return false;
}
dst.Init(src.width_, src.height_, src.channel_, LDataType::FLOAT32);
const float *src_start_p = src;
float *dst_start_p = dst;
if (mean && !norm) {
for (int h = 0; h < src.height_; h++) {
for (int w = 0; w < src.width_; w++) {
for (int c = 0; c < src.channel_; c++) {
int index = (h * src.width_ + w) * src.channel_ + c;
dst_start_p[index] = src_start_p[index] - mean[c];
}
}
}
} else if (!mean && norm) {
for (int h = 0; h < src.height_; h++) {
for (int w = 0; w < src.width_; w++) {
for (int c = 0; c < src.channel_; c++) {
int index = (h * src.width_ + w) * src.channel_ + c;
dst_start_p[index] = src_start_p[index] * norm[c];
}
}
}
} else if (mean && norm) {
for (int h = 0; h < src.height_; h++) {
for (int w = 0; w < src.width_; w++) {
for (int c = 0; c < src.channel_; c++) {
int index = (h * src.width_ + w) * src.channel_ + c;
dst_start_p[index] = (src_start_p[index] - mean[c]) * norm[c];
}
}
}
} else {
return false;
}
return true;
}
template <typename T>
static void PaddWithConstant(const LiteMat &src, LiteMat &dst, const int top, const int bottom, const int left,
const int right, const PaddBorderType pad_type, uint8_t fill_b_or_gray, uint8_t fill_g,
uint8_t fill_r) {
dst.Init(src.width_ + left + right, src.height_ + top + bottom, src.channel_, src.data_type_);
const T *src_start_p = src;
T *dst_start_p = dst;
// padd top
for (int h = 0; h < top; h++) {
for (int w = 0; w < dst.width_; w++) {
int index = (h * dst.width_ + w) * dst.channel_;
if (dst.channel_ == 1) {
dst_start_p[index] = fill_b_or_gray;
} else if (dst.channel_ == 3) {
dst_start_p[index] = fill_b_or_gray;
dst_start_p[index + 1] = fill_g;
dst_start_p[index + 2] = fill_r;
} else {
}
}
}
// padd bottom
for (int h = dst.height_ - bottom; h < dst.height_; h++) {
for (int w = 0; w < dst.width_; w++) {
int index = (h * dst.width_ + w) * dst.channel_;
if (dst.channel_ == 1) {
dst_start_p[index] = fill_b_or_gray;
} else if (dst.channel_ == 3) {
dst_start_p[index] = fill_b_or_gray;
dst_start_p[index + 1] = fill_g;
dst_start_p[index + 2] = fill_r;
} else {
}
}
}
// padd left
for (int h = top; h < dst.height_ - bottom; h++) {
for (int w = 0; w < left; w++) {
int index = (h * dst.width_ + w) * dst.channel_;
if (dst.channel_ == 1) {
dst_start_p[index] = fill_b_or_gray;
} else if (dst.channel_ == 3) {
dst_start_p[index] = fill_b_or_gray;
dst_start_p[index + 1] = fill_g;
dst_start_p[index + 2] = fill_r;
} else {
}
}
}
// padd right
for (int h = top; h < dst.height_ - bottom; h++) {
for (int w = dst.width_ - right; w < dst.width_; w++) {
int index = (h * dst.width_ + w) * dst.channel_;
if (dst.channel_ == 1) {
dst_start_p[index] = fill_b_or_gray;
} else if (dst.channel_ == 3) {
dst_start_p[index] = fill_b_or_gray;
dst_start_p[index + 1] = fill_g;
dst_start_p[index + 2] = fill_r;
} else {
}
}
}
// image data
dst_start_p = dst_start_p + (top * dst.width_ + left) * dst.channel_;
for (int i_h = 0; i_h < src.height_; i_h++) {
const T *src_index_p = src_start_p + i_h * src.width_ * src.channel_;
T *dst_index_p = dst_start_p + i_h * dst.width_ * dst.channel_;
(void)memcpy(dst_index_p, src_index_p, src.width_ * src.channel_ * sizeof(T));
}
}
bool Padd(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type,
uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r) {
if (pad_type == PADD_BORDER_CONSTANT && src.data_type_ == LDataType::FLOAT32) {
PaddWithConstant<float>(src, dst, top, bottom, left, right, pad_type, fill_b_or_gray, fill_g, fill_r);
} else if (pad_type == PADD_BORDER_CONSTANT && src.data_type_ == LDataType::UINT8) {
PaddWithConstant<uint8_t>(src, dst, top, bottom, left, right, pad_type, fill_b_or_gray, fill_g, fill_r);
} else {
return false;
}
return true;
}
std::vector<std::vector<float>> GetDefaultBoxes(BoxesConfig config) {
std::vector<float> fk;
float num = static_cast<float>(config.img_shape[0]);
for (int i = 0; i < config.steps.size(); i++) {
fk.push_back(num / config.steps[i]);
}
float scale_rate = (config.max_scale - config.min_scale) / (config.num_default.size() - 1);
std::vector<float> scales(config.num_default.size());
for (int i = 0; i < scales.size(); i++) {
scales[i] = config.min_scale + scale_rate * i;
}
scales.push_back(1.0f);
std::vector<std::vector<float>> default_boxes;
for (int i = 0; i < config.feature_size.size(); i++) {
float sk1 = scales[i];
float sk2 = scales[i + 1];
float sk3 = sqrt(sk1 * sk2);
std::vector<std::vector<float>> all_sizes;
float w, h;
if (i == 0) {
w = sk1 * sqrt(2);
h = sk1 / sqrt(2);
all_sizes = {{0.1, 0.1}, {w, h}, {h, w}};
} else {
all_sizes = {{sk1, sk1}};
for (int j = 0; j < config.aspect_rations[i].size(); j++) {
w = sk1 * sqrt(config.aspect_rations[i][j]);
h = sk1 / sqrt(config.aspect_rations[i][j]);
all_sizes.push_back({w, h});
all_sizes.push_back({h, w});
}
all_sizes.push_back({sk3, sk3});
}
for (int j = 0; j < config.feature_size[i]; j++) {
for (int k = 0; k < config.feature_size[i]; k++) {
for (int m = 0; m < all_sizes.size(); m++) {
float cx = (k + 0.5) / fk[i];
float cy = (j + 0.5) / fk[i];
default_boxes.push_back({cy, cx, all_sizes[m][1], all_sizes[m][0]});
}
}
}
}
return default_boxes;
}
void ConvertBoxes(std::vector<std::vector<float>> &boxes, const std::vector<std::vector<float>> &default_boxes,
const BoxesConfig config) {
for (int i = 0; i < default_boxes.size(); i++) {
boxes[i][0] = boxes[i][0] * config.prior_scaling[0] * default_boxes[i][2] + default_boxes[i][0];
boxes[i][1] = boxes[i][1] * config.prior_scaling[0] * default_boxes[i][3] + default_boxes[i][1];
boxes[i][2] = exp(boxes[i][2] * config.prior_scaling[1]) * default_boxes[i][2];
boxes[i][3] = exp(boxes[i][3] * config.prior_scaling[1]) * default_boxes[i][3];
}
}
std::vector<int> ApplyNms(const std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres,
int max_boxes) {
int boxes_num = all_boxes.size();
std::vector<float> y1(boxes_num);
std::vector<float> x1(boxes_num);
std::vector<float> y2(boxes_num);
std::vector<float> x2(boxes_num);
std::vector<float> areas(boxes_num);
std::vector<int> order(boxes_num);
for (int i = 0; i < boxes_num; i++) {
y1[i] = all_boxes[i][0];
x1[i] = all_boxes[i][1];
y2[i] = all_boxes[i][2];
x2[i] = all_boxes[i][3];
areas[i] = (x2[i] - x1[i] + 1) * (y2[i] - y1[i] + 1);
order[i] = i;
}
std::sort(order.begin(), order.end(),
[&all_scores](int pos1, int pos2) { return (all_scores[pos1] > all_scores[pos2]); });
std::vector<int> keep;
while (order.size() > 0) {
int i = order[0];
keep.push_back(i);
if (keep.size() >= max_boxes) {
break;
}
int len = order.size() - 1;
std::vector<float> ovr(len);
for (int j = 0; j < len; j++) {
float xx1 = std::max(x1[i], x1[order[j + 1]]);
float yy1 = std::max(y1[i], y1[order[j + 1]]);
float xx2 = std::min(x2[i], x2[order[j + 1]]);
float yy2 = std::min(y2[i], y2[order[j + 1]]);
float w = std::max(0.0f, xx2 - xx1 + 1);
float h = std::max(0.0f, yy2 - yy1 + 1);
float inter = w * h;
ovr[j] = inter / (areas[i] + areas[order[j + 1]] - inter);
}
std::vector<int> inds;
for (int j = 0; j < len; j++) {
if (ovr[j] <= thres) {
inds.push_back(j + 1);
}
}
std::vector<int> new_order;
for (int k = 0; k < inds.size(); k++) {
new_order.push_back(order[inds[k]]);
}
order = new_order;
}
return keep;
}
void WarpAffine(LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, UINT8_C3 borderValue) {
double IM[6];
for (int i = 0; i < 6; i++) {
IM[i] = M[i];
}
double D = IM[0] * IM[4] - IM[1] * IM[3];
D = D != 0 ? 1. / D : 0;
double A11 = IM[4] * D, A22 = IM[0] * D;
IM[0] = A11;
IM[1] *= -D;
IM[3] *= -D;
IM[4] = A22;
double b1 = -IM[0] * IM[2] - IM[1] * IM[5];
double b2 = -IM[3] * IM[2] - IM[4] * IM[5];
IM[2] = b1;
IM[5] = b2;
out_img.Init(dsize[0], dsize[1]);
for (int y = 0; y < out_img.height_; y++) {
for (int x = 0; x < out_img.width_; x++) {
int src_x = IM[0] * x + IM[1] * y + IM[2];
int src_y = IM[3] * x + IM[4] * y + IM[5];
if (src_x >= 0 && src_y >= 0 && src_x < src.width_ && src_y < src.height_) {
UINT8_C3 src_pixel = static_cast<UINT8_C3 *>(src.data_ptr_)[src_y * src.width_ + src_x];
static_cast<UINT8_C3 *>(out_img.data_ptr_)[y * src.width_ + x] = src_pixel;
} else {
static_cast<UINT8_C3 *>(out_img.data_ptr_)[y * src.width_ + x] = borderValue;
}
}
}
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,83 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef IMAGE_PROCESS_H_
#define IMAGE_PROCESS_H_
#include <math.h>
#include <vector>
#include <algorithm>
#include "lite_cv/lite_mat.h"
namespace mindspore {
namespace dataset {
#define INT16_CAST(X) \
static_cast<int16_t>(::std::min(::std::max(static_cast<int>(X + (X >= 0.f ? 0.5f : -0.5f)), -32768), 32767));
#define R2GRAY 77
#define G2GRAY 150
#define B2GRAY 29
#define GRAYSHIFT 8
enum PaddBorderType { PADD_BORDER_CONSTANT = 0, PADD_BORDER_REPLICATE = 1 };
struct BoxesConfig {
public:
std::vector<size_t> img_shape;
std::vector<int> num_default;
std::vector<int> feature_size;
float min_scale;
float max_scale;
std::vector<std::vector<float>> aspect_rations;
std::vector<int> steps;
std::vector<float> prior_scaling;
};
/// \brief resizing image by bilinear algorithm, the data type of currently only supports is uint8,
/// the channel of currently supports is 3 and 1
bool ResizeBilinear(const LiteMat &src, LiteMat &dst, int dst_w, int dst_h);
/// \brief Init Lite Mat from pixel, the conversion of currently supports is rbgaTorgb and rgbaTobgr
bool InitFromPixel(const unsigned char *data, LPixelType pixel_type, LDataType data_type, int w, int h, LiteMat &m);
/// \brief convert the data type, the conversion of currently supports is uint8 to float
bool ConvertTo(const LiteMat &src, LiteMat &dst, double scale = 1.0);
/// \brief crop image, the channel supports is 3 and 1
bool Crop(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h);
/// \brief normalize image, currently the supports data type is float
bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, float *mean, float *norm);
/// \brief padd image, the channel supports is 3 and 1
bool Padd(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type,
uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r);
void WarpAffine(const LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, uint8_t borderValue[3]);
std::vector<std::vector<float>> GetDefaultBoxes(const BoxesConfig config);
void ConvertBoxes(std::vector<std::vector<float>> &boxes, const std::vector<std::vector<float>> &default_boxes,
const BoxesConfig config);
std::vector<int> ApplyNms(const std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres,
int max_boxes);
} // namespace dataset
} // namespace mindspore
#endif // IMAGE_PROCESS_H_

View File

@ -0,0 +1,207 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lite_cv/lite_mat.h"
namespace mindspore {
namespace dataset {
LiteMat::LiteMat() {
data_ptr_ = 0;
elem_size_ = 0;
width_ = 0;
height_ = 0;
channel_ = 0;
c_step_ = 0;
dims_ = 0;
data_type_ = LDataType::UINT8;
ref_count_ = 0;
}
LiteMat::LiteMat(int width, LDataType data_type) {
data_ptr_ = 0;
elem_size_ = 0;
width_ = 0;
height_ = 0;
channel_ = 0;
c_step_ = 0;
dims_ = 0;
data_type_ = LDataType::UINT8;
ref_count_ = 0;
Init(width, data_type);
}
LiteMat::LiteMat(int width, int height, LDataType data_type) {
data_ptr_ = 0;
elem_size_ = 0;
width_ = 0;
height_ = 0;
channel_ = 0;
c_step_ = 0;
dims_ = 0;
data_type_ = LDataType::UINT8;
ref_count_ = 0;
Init(width, height, data_type);
}
LiteMat::LiteMat(int width, int height, int channel, LDataType data_type) {
data_ptr_ = 0;
elem_size_ = 0;
width_ = 0;
height_ = 0;
channel_ = 0;
c_step_ = 0;
dims_ = 0;
data_type_ = LDataType::UINT8;
ref_count_ = 0;
Init(width, height, channel, data_type);
}
LiteMat::~LiteMat() { Release(); }
int LiteMat::addRef(int *p, int value) {
int v = *p;
*p += value;
return v;
}
LiteMat::LiteMat(const LiteMat &m) {
data_ptr_ = m.data_ptr_;
elem_size_ = m.elem_size_;
width_ = m.width_;
height_ = m.height_;
channel_ = m.channel_;
c_step_ = m.c_step_;
dims_ = m.dims_;
data_type_ = m.data_type_;
ref_count_ = m.ref_count_;
if (ref_count_) {
addRef(ref_count_, 1);
}
}
LiteMat &LiteMat::operator=(const LiteMat &m) {
if (this == &m) {
return *this;
}
if (m.ref_count_) {
addRef(m.ref_count_, 1);
}
Release();
data_ptr_ = m.data_ptr_;
elem_size_ = m.elem_size_;
width_ = m.width_;
height_ = m.height_;
channel_ = m.channel_;
c_step_ = m.c_step_;
dims_ = m.dims_;
data_type_ = m.data_type_;
ref_count_ = m.ref_count_;
return *this;
}
void LiteMat::Init(int width, LDataType data_type) {
Release();
data_type_ = data_type;
InitElemSize(data_type);
width_ = width;
dims_ = 1;
height_ = 1;
channel_ = 1;
c_step_ = width;
size_ = c_step_ * elem_size_;
data_ptr_ = AlignMalloc(size_);
ref_count_ = new int[1];
*ref_count_ = 1;
}
void LiteMat::Init(int width, int height, LDataType data_type) {
Release();
data_type_ = data_type;
InitElemSize(data_type);
width_ = width;
height_ = height;
dims_ = 2;
channel_ = 1;
c_step_ = width_ * height_;
size_ = c_step_ * elem_size_;
data_ptr_ = AlignMalloc(size_);
ref_count_ = new int[1];
*ref_count_ = 1;
}
void LiteMat::Init(int width, int height, int channel, LDataType data_type) {
Release();
data_type_ = data_type;
InitElemSize(data_type);
width_ = width;
height_ = height;
dims_ = 3;
channel_ = channel;
c_step_ = ((height_ * width_ * elem_size_ + ALIGN - 1) & (-ALIGN)) / elem_size_;
size_ = c_step_ * channel_ * elem_size_;
data_ptr_ = AlignMalloc(size_);
ref_count_ = new int[1];
*ref_count_ = 1;
}
bool LiteMat::IsEmpty() const { return data_ptr_ == 0 || data_ptr_ == nullptr || c_step_ * channel_ == 0; }
void LiteMat::Release() {
if (ref_count_ && (addRef(ref_count_, -1) == 1)) {
if (data_ptr_) {
AlignFree(data_ptr_);
}
if (ref_count_) {
delete[] ref_count_;
}
}
data_ptr_ = 0;
elem_size_ = 0;
width_ = 0;
height_ = 0;
channel_ = 0;
c_step_ = 0;
ref_count_ = 0;
}
void *LiteMat::AlignMalloc(unsigned int size) {
unsigned int length = sizeof(void *) + ALIGN - 1;
void *p_raw = reinterpret_cast<void *>(malloc(size + length));
if (p_raw) {
void **p_algin = reinterpret_cast<void **>(((size_t)(p_raw) + length) & ~(ALIGN - 1));
p_algin[-1] = p_raw;
return p_algin;
}
return nullptr;
}
void LiteMat::AlignFree(void *ptr) { (void)free(reinterpret_cast<void **>(ptr)[-1]); }
inline void LiteMat::InitElemSize(LDataType data_type) {
if (data_type == LDataType::UINT8) {
elem_size_ = 1;
} else if (data_type == LDataType::UINT16) {
elem_size_ = 2;
} else if (data_type == LDataType::FLOAT32) {
elem_size_ = 4;
} else {
}
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,219 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINI_MAT_H_
#define MINI_MAT_H_
#include <string>
#include <memory>
namespace mindspore {
namespace dataset {
#define ALIGN 16
template <typename T>
struct Chn1 {
T c1;
};
template <typename T>
struct Chn2 {
T c1;
T c2;
};
template <typename T>
struct Chn3 {
T c1;
T c2;
T c3;
};
template <typename T>
struct Chn4 {
T c1;
T c2;
T c3;
T c4;
};
using UINT8_C1 = Chn1<uint8_t>;
using UINT8_C2 = Chn2<uint8_t>;
using UINT8_C3 = Chn3<uint8_t>;
using UINT8_C4 = Chn4<uint8_t>;
using INT8_C1 = Chn1<int8_t>;
using INT8_C2 = Chn2<int8_t>;
using INT8_C3 = Chn3<int8_t>;
using INT8_C4 = Chn4<int8_t>;
using UINT32_C1 = Chn1<uint32_t>;
using UINT32_C2 = Chn2<uint32_t>;
using UINT32_C3 = Chn3<uint32_t>;
using UINT32_C4 = Chn4<uint32_t>;
using INT32_C1 = Chn1<int32_t>;
using INT32_C2 = Chn2<int32_t>;
using INT32_C3 = Chn3<int32_t>;
using INT32_C4 = Chn4<int32_t>;
using FLOAT32_C1 = Chn1<float>;
using FLOAT32_C2 = Chn2<float>;
using FLOAT32_C3 = Chn3<float>;
using FLOAT32_C4 = Chn4<float>;
using FLOAT64_C1 = Chn1<double>;
using FLOAT64_C2 = Chn2<double>;
using FLOAT64_C3 = Chn3<double>;
using FLOAT64_C4 = Chn4<double>;
enum LPixelType {
BGR = 0,
RGB = 1,
RGBA = 2,
RGBA2GRAY = 3,
RGBA2BGR = 4,
};
class LDataType {
public:
enum Type : uint8_t {
UNKNOWN = 0,
BOOL,
INT8,
UINT8,
INT16,
UINT16,
INT32,
UINT32,
INT64,
UINT64,
FLOAT16,
FLOAT32,
FLOAT64,
NUM_OF_TYPES
};
LDataType() : type_(UNKNOWN) {}
LDataType(Type d) : type_(d) {}
~LDataType() = default;
inline Type Value() const { return type_; }
inline bool operator==(const LDataType &ps) const {
if (this->type_ == ps.type_) return true;
return false;
}
inline bool operator!=(const LDataType &ps) const {
if (this->type_ != ps.type_) return true;
return false;
}
uint8_t SizeInBytes() const {
if (type_ < LDataType::NUM_OF_TYPES)
return SIZE_IN_BYTES[type_];
else
return 0;
}
public:
static inline const uint8_t SIZE_IN_BYTES[] = {
0, // UNKNOWN
1, // BOOL
1, // INT8
1, // UINT8
2, // INT16
2, // UINT16
4, // INT32
4, // UINT32
8, // INT64
8, // UINT64
2, // FLOAT16
4, // FLOAT32
8, // FLOAT64
};
Type type_;
};
class LiteMat {
// Class that represents a lite Mat of a Image.
// -# The pixel type of Lite Mat is RGBRGB...RGB.
public:
LiteMat();
explicit LiteMat(int width, LDataType data_type = LDataType::UINT8);
LiteMat(int width, int height, LDataType data_type = LDataType::UINT8);
LiteMat(int width, int height, int channel, LDataType data_type = LDataType::UINT8);
~LiteMat();
LiteMat(const LiteMat &m);
void Init(int width, LDataType data_type = LDataType::UINT8);
void Init(int width, int height, LDataType data_type = LDataType::UINT8);
void Init(int width, int height, int channel, LDataType data_type = LDataType::UINT8);
bool IsEmpty() const;
void Release();
LiteMat &operator=(const LiteMat &m);
template <typename T>
operator T *() {
return reinterpret_cast<T *>(data_ptr_);
}
template <typename T>
operator const T *() const {
return reinterpret_cast<const T *>(data_ptr_);
}
private:
/// \brief apply for memory alignment
void *AlignMalloc(unsigned int size);
/// \brief free memory
void AlignFree(void *ptr);
void InitElemSize(LDataType data_type);
/// \brief add reference
int addRef(int *p, int value);
public:
void *data_ptr_ = nullptr;
int elem_size_;
int width_;
int height_;
int channel_;
int c_step_;
int dims_;
size_t size_;
LDataType data_type_;
int *ref_count_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINI_MAT_H_

View File

@ -76,7 +76,7 @@ option(BUILD_CONVERTER "if build converter" on)
option(ENABLE_FP16 "if build fp16 ops" off)
option(SUPPORT_GPU "if support gpu" off)
option(OFFLINE_COMPILE "if offline compile OpenCL kernel" off)
set(BUILD_MINDDATA "off" CACHE STRING "off, lite, or full")
set(BUILD_MINDDATA "off" CACHE STRING "off, lite, lite_cv or full")
option(BUILD_MINDDATA_EXAMPLE "" on)
set(CMAKE_VERBOSE_MAKEFILE on)
@ -215,6 +215,13 @@ if (BUILD_MINDDATA STREQUAL "lite" OR BUILD_MINDDATA STREQUAL "full")
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/minddata)
endif ()
if (BUILD_MINDDATA STREQUAL "lite_cv")
# TODO: add sentencepiece dependency
#include(${TOP_DIR}/cmake/external_libs/sentencepiece.cmake)
add_compile_definitions(ENABLE_ANDROID)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/minddata)
endif ()
if (BUILD_DEVICE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/src)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/nnacl)

View File

@ -70,6 +70,9 @@ AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/text/kernels MINDDATA_TEXT_KERNELS_SRC_FILE
AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/util MINDDATA_UTIL_SRC_FILES)
AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/kernels/image/lite_cv MINDDATA_KERNELS_IMAGE_LITE_CV_FILES)
if (BUILD_MINDDATA STREQUAL "full")
list(REMOVE_ITEM MINDDATA_API_SRC_FILES
"${MINDDATA_DIR}/api/text.cc"
@ -175,7 +178,6 @@ if (BUILD_MINDDATA STREQUAL "full")
COMMAND cp -rf ${CMAKE_CURRENT_SOURCE_DIR}/example/testCifar10Data ${CMAKE_BINARY_DIR}/minddata
)
endif()
elseif (BUILD_MINDDATA STREQUAL "lite")
list(REMOVE_ITEM MINDDATA_CORE_SRC_FILES "${MINDDATA_DIR}/core/client.cc")
list(REMOVE_ITEM MINDDATA_KERNELS_SRC_FILES "${MINDDATA_DIR}/kernels/py_func_op.cc")
@ -207,6 +209,21 @@ elseif (BUILD_MINDDATA STREQUAL "lite")
mindspore::json
)
# ref: https://github.com/android/ndk/issues/1202
if (PLATFORM_ARM32)
file(GLOB_RECURSE LIBCLANG_RT_LIB $ENV{ANDROID_NDK}/libclang_rt.builtins-arm-android.a)
if (LIBCLANG_RT_LIB STREQUAL "")
MESSAGE(FATAL_ERROR "Cannot find libclang_rt.builtins-arm-androi2d.a in $ENV{ANDROID_NDK}")
endif()
target_link_libraries(minddata-lite ${LIBCLANG_RT_LIB})
endif()
elseif (BUILD_MINDDATA STREQUAL "lite_cv")
include_directories(${MINDDATA_DIR}/kernels/image)
message(STATUS ${MINDDATA_DIR}/kernels/image)
add_library(minddata-lite SHARED
${MINDDATA_KERNELS_IMAGE_LITE_CV_FILES}
)
# ref: https://github.com/android/ndk/issues/1202
if (PLATFORM_ARM32)
file(GLOB_RECURSE LIBCLANG_RT_LIB $ENV{ANDROID_NDK}/libclang_rt.builtins-arm-android.a)

View File

@ -33,12 +33,14 @@ if(ENABLE_MINDDATA)
endif()
# fetch ut test files
if(ENABLE_MINDDATA)
include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image)
file(GLOB_RECURSE UT_SRCS RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
./stub/*.cc
./common/*.cc
./abstract/*.cc
./base/*.cc
./dataset/*.cc
${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image/lite_cv/*.cc
./debug/*.cc
./device/*.cc
./ir/*.cc
@ -55,6 +57,7 @@ if(ENABLE_MINDDATA)
./utils/*.cc
./vm/*.cc
)
if(NOT ENABLE_PYTHON)
set(PYTHON_RELATED_SRCS
dataset/filter_op_test.cc
@ -159,6 +162,11 @@ endif()
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
target_link_libraries(ut_tests PRIVATE mindspore::gtest mindspore::event mindspore::event_pthreads mindspore_gvar ${PYTHON_LIBRARIES} pthread util dl)
if (ENABLE_MINDDATA)
# AUX_SOURCE_DIRECTORY(LITE_CV_FILES)
# message(STATUS "xxxxxxxxxxxxxxxxx"${LITE_CV_FILES} )
# add_library(_live_cv OBJECT ${LITE_CV_FILES})
target_link_libraries(ut_tests PRIVATE _c_dataengine _c_mindrecord)
endif()
else()

View File

@ -123,6 +123,7 @@ SET(DE_UT_SRCS
swap_red_blue_test.cc
distributed_sampler_test.cc
data_helper_test.cc
image_process_test.cc
)
if (ENABLE_PYTHON)

View File

@ -0,0 +1,252 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
class MindDataImageProcess : public UT::Common {
public:
MindDataImageProcess() {}
void SetUp() {}
};
void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
int cv_h = cv_mat.rows;
int cv_w = cv_mat.cols;
int cv_c = cv_mat.channels();
int lite_h = lite_mat.height_;
int lite_w = lite_mat.width_;
int lite_c = lite_mat.channel_;
ASSERT_TRUE(cv_h == lite_h);
ASSERT_TRUE(cv_w == lite_w);
ASSERT_TRUE(cv_c == lite_c);
}
LiteMat Lite3CImageProcess(LiteMat &lite_mat_bgr) {
bool ret;
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
if (!ret) {
MS_LOG(ERROR) << "ResizeBilinear error";
}
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0 );
if (!ret) {
MS_LOG(ERROR) << "ConvertTo error";
}
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
if (!ret) {
MS_LOG(ERROR) << "Crop error";
}
float means[3] = {0.485, 0.456, 0.406};
float vars[3] = {1.0 / 0.229, 1.0 / 0.224, 1.0 / 0.225};
LiteMat lite_norm_mat_cut;
SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, vars);
return lite_norm_mat_cut;
}
cv::Mat cv3CImageProcess(cv::Mat &image) {
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float meanG = 0.456;
float meanB = 0.406;
float varR = 0.229;
float varG = 0.224;
float varB = 0.225;
cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
cv::Scalar var = cv::Scalar(varR, varG, varB);
cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test3C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv3CImageProcess(image);
// cv::imwrite("/home/xlei/test_3cv.jpg", cv_image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
if (!ret) {
MS_LOG(ERROR) << "Init From RGBA error";
}
LiteMat lite_norm_mat_cut = Lite3CImageProcess(lite_mat_bgr);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
// cv::imwrite("/home/xlei/test_3clite.jpg", dst_image);
CompareMat(cv_image, lite_norm_mat_cut);
}
LiteMat Lite1CImageProcess(LiteMat &lite_mat_bgr) {
LiteMat lite_mat_resize;
ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
LiteMat lite_mat_convert_float;
ConvertTo(lite_mat_resize, lite_mat_convert_float);
LiteMat lite_mat_cut;
Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
float means[1] = {0.485};
float vars[1] = {1.0 / 0.229};
LiteMat lite_norm_mat_cut;
SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, vars);
return lite_norm_mat_cut;
}
cv::Mat cv1CImageProcess(cv::Mat &image) {
cv::Mat gray_image;
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
cv::Mat resize_256_image;
cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float varR = 0.229;
cv::Scalar mean = cv::Scalar(meanR);
cv::Scalar var = cv::Scalar(varR);
cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test1C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv1CImageProcess(image);
// cv::imwrite("/home/xlei/test_c1v.jpg", cv_image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
LiteMat lite_norm_mat_cut = Lite1CImageProcess(lite_mat_bgr);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
// cv::imwrite("/home/xlei/test_c1lite.jpg", dst_image);
CompareMat(cv_image, lite_norm_mat_cut);
}
TEST_F(MindDataImageProcess, TestPadd) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
int left = 10;
int right = 10;
int top = 10;
int bottom = 10;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(resize_256_image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
// cv::imwrite("/home/xlei/test_ccc.jpg", b_image);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
LiteMat lite_mat_resize;
ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
LiteMat makeborder;
Padd(lite_mat_resize, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
cv::Mat dst_image(256 + top + bottom, 256 + left + right, CV_8UC3, makeborder.data_ptr_);
// cv::imwrite("/home/xlei/test_liteccc.jpg", dst_image);
}
TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
BoxesConfig config;
config.img_shape = {300, 300};
config.num_default = {3, 6, 6, 6, 6, 6};
config.feature_size = {19, 10, 5, 3, 2, 1};
config.min_scale = 0.2;
config.max_scale = 0.95;
config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
config.steps = {16, 32, 64, 100, 150, 300};
config.prior_scaling = {0.1, 0.2};
std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
ASSERT_TRUE(default_boxes.size() == 1917);
}
TEST_F(MindDataImageProcess, TestApplyNms) {
std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
ASSERT_TRUE(keep[0] == 3);
ASSERT_TRUE(keep[1] == 0);
ASSERT_TRUE(keep[2] == 1);
}