forked from mindspore-Ecosystem/mindspore
changed nll_loss total_weight output to be sum of the target weights instead of sum of weights
This commit is contained in:
parent
d2c3f68232
commit
b2b9dfd24a
|
@ -313,26 +313,23 @@ __global__ void NLLLossKernel(const int n, const int c, const T *input, const in
|
|||
|
||||
template <typename T, typename S>
|
||||
void NLLLoss(const int n, const int c, const int reduction, const T *input, const int32_t *target, const S *weight,
|
||||
S *tmp_weight, T *loss, S *total_weight, T *tmp_loss, S *tmp_target_weight, cudaStream_t stream) {
|
||||
CopyEqual<<<GET_BLOCKS(c), GET_THREADS, 0, stream>>>(weight, tmp_weight, c);
|
||||
Sum(tmp_weight, c, stream);
|
||||
|
||||
// copy sum of weight (tmp_weight[0]) to total_weight
|
||||
CopyEqual<<<1, 1, 0, stream>>>(tmp_weight, total_weight, 1);
|
||||
|
||||
T *loss, S *total_weight, T *tmp_loss, S *tmp_target_weight, cudaStream_t stream) {
|
||||
// if reduction != "none"
|
||||
if (reduction != 0) {
|
||||
NLLLossKernel<<<GET_BLOCKS(n), GET_THREADS, 0, stream>>>(n, c, input, target, weight, tmp_target_weight, tmp_loss);
|
||||
if (reduction == 1) {
|
||||
// prepare denominator for mean reduction
|
||||
Sum(tmp_target_weight, n, stream);
|
||||
}
|
||||
// sum target weights after populating them
|
||||
Sum(tmp_target_weight, n, stream);
|
||||
// reduce tmp_loss
|
||||
Reduce(tmp_loss, n, tmp_target_weight, reduction, loss, stream);
|
||||
} else {
|
||||
// no reduction, output directly to loss
|
||||
NLLLossKernel<<<GET_BLOCKS(n), GET_THREADS, 0, stream>>>(n, c, input, target, weight, tmp_target_weight, loss);
|
||||
// sum target weights after populatin them
|
||||
Sum(tmp_target_weight, n, stream);
|
||||
}
|
||||
|
||||
// copy sum of weight (tmp_target_weight[0]) to total_weight
|
||||
CopyEqual<<<1, 1, 0, stream>>>(tmp_target_weight, total_weight, 1);
|
||||
}
|
||||
|
||||
template void KLDivLoss<float>(const int &input_size, const int &reduction, const float *input_x, const float *input_y,
|
||||
|
@ -350,13 +347,12 @@ template void BinaryCrossEntropyLossGrad<float>(const int &input_size, const int
|
|||
float *dx, cudaStream_t stream);
|
||||
|
||||
template void NLLLoss<float, float>(const int n, const int c, const int reduction, const float *input,
|
||||
const int32_t *target, const float *weight, float *tmp_weight, float *loss,
|
||||
float *total_weight, float *tmp_loss, float *tmp_target_weight,
|
||||
cudaStream_t stream);
|
||||
const int32_t *target, const float *weight, float *loss, float *total_weight,
|
||||
float *tmp_loss, float *tmp_target_weight, cudaStream_t stream);
|
||||
|
||||
template void NLLLoss<float, half>(const int n, const int c, const int reduction, const float *input,
|
||||
const int32_t *target, const half *weight, half *tmp_weight, float *loss,
|
||||
half *total_weight, float *tmp_loss, half *tmp_target_weight, cudaStream_t stream);
|
||||
const int32_t *target, const half *weight, float *loss, half *total_weight,
|
||||
float *tmp_loss, half *tmp_target_weight, cudaStream_t stream);
|
||||
|
||||
template void KLDivLoss<half>(const int &input_size, const int &reduction, const half *input_x, const half *input_y,
|
||||
half *loss, half *tmp_loss, cudaStream_t stream);
|
||||
|
@ -373,9 +369,9 @@ template void BinaryCrossEntropyLossGrad<half>(const int &input_size, const int
|
|||
cudaStream_t stream);
|
||||
|
||||
template void NLLLoss<half, half>(const int n, const int c, const int reduction, const half *input,
|
||||
const int32_t *target, const half *weight, half *tmp_weight, half *loss,
|
||||
half *total_weight, half *tmp_loss, half *tmp_target_weight, cudaStream_t stream);
|
||||
const int32_t *target, const half *weight, half *loss, half *total_weight,
|
||||
half *tmp_loss, half *tmp_target_weight, cudaStream_t stream);
|
||||
|
||||
template void NLLLoss<half, float>(const int n, const int c, const int reduction, const half *input,
|
||||
const int32_t *target, const float *weight, float *tmp_weight, half *loss,
|
||||
float *total_weight, half *tmp_loss, float *tmp_target_weight, cudaStream_t stream);
|
||||
const int32_t *target, const float *weight, half *loss, float *total_weight,
|
||||
half *tmp_loss, float *tmp_target_weight, cudaStream_t stream);
|
||||
|
|
|
@ -31,5 +31,5 @@ void KLDivLossGrad(const int &input_size, const int &reduction, const T *input_x
|
|||
T *dx, T *dy, cudaStream_t stream);
|
||||
template <typename T, typename S>
|
||||
void NLLLoss(const int n, const int c, const int reduction, const T *input, const int32_t *target, const S *weight,
|
||||
S *tmp_weight, T *loss, S *total_weight, T *tmp_loss, S *tmp_target_weight, cudaStream_t stream);
|
||||
T *loss, S *total_weight, T *tmp_loss, S *tmp_target_weight, cudaStream_t stream);
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_LOSS_WITH_REDUCTION_IMPL_CUH
|
||||
|
|
|
@ -46,10 +46,9 @@ class NLLLossGpuKernel : public GpuKernel {
|
|||
|
||||
T *tmp_loss_device = GetDeviceAddress<T>(workspace, 0);
|
||||
S *tmp_target_weight_device = GetDeviceAddress<S>(workspace, 1);
|
||||
S *tmp_weight_device = GetDeviceAddress<S>(workspace, 2);
|
||||
|
||||
NLLLoss(n_, c_, reduction_, input_device, target_device, weight_device, tmp_weight_device, loss_device,
|
||||
total_weight_device, tmp_loss_device, tmp_target_weight_device, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
NLLLoss(n_, c_, reduction_, input_device, target_device, weight_device, loss_device, total_weight_device,
|
||||
tmp_loss_device, tmp_target_weight_device, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -74,7 +73,6 @@ class NLLLossGpuKernel : public GpuKernel {
|
|||
tmp_loss_size_ = sizeof(T) * n_;
|
||||
}
|
||||
|
||||
tmp_weight_size_ = c_ * sizeof(S);
|
||||
tmp_target_weight_size_ = n_ * sizeof(S);
|
||||
|
||||
InitSizeLists();
|
||||
|
@ -88,7 +86,6 @@ class NLLLossGpuKernel : public GpuKernel {
|
|||
reduction_ = 1; // default value
|
||||
tmp_loss_size_ = 0;
|
||||
tmp_target_weight_size_ = 0; // tmp_target_weight (N,) array
|
||||
tmp_weight_size_ = 0;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
|
@ -108,7 +105,6 @@ class NLLLossGpuKernel : public GpuKernel {
|
|||
output_size_list_.push_back(sizeof(S)); // total weight
|
||||
workspace_size_list_.push_back(tmp_loss_size_);
|
||||
workspace_size_list_.push_back(tmp_target_weight_size_);
|
||||
workspace_size_list_.push_back(tmp_weight_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -116,7 +112,6 @@ class NLLLossGpuKernel : public GpuKernel {
|
|||
int reduction_;
|
||||
size_t tmp_loss_size_;
|
||||
size_t tmp_target_weight_size_;
|
||||
size_t tmp_weight_size_;
|
||||
int n_;
|
||||
int c_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
|
|
|
@ -47,7 +47,7 @@ def nll_loss_template(nptype_input, nptype_weight, reduction):
|
|||
loss_np = loss.asnumpy()
|
||||
total_weight_np = total_weight.asnumpy()
|
||||
|
||||
expected_tot_weight = np.array(1.34000003)
|
||||
expected_tot_weight = np.array(0.129999995)
|
||||
|
||||
if reduction == 'none':
|
||||
expected_loss = np.array([-0.238499984, -0.108800001])
|
||||
|
|
Loading…
Reference in New Issue