forked from mindspore-Ecosystem/mindspore
add test case about switch simplify
This commit is contained in:
parent
8427a32034
commit
b140512d4b
|
@ -0,0 +1,64 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common import Tensor, dtype
|
||||
import mindspore.ops.operations as P
|
||||
import mindspore.ops.functional as F
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_watch_get_func_graphs_from_abstract():
|
||||
"""
|
||||
Feature: Get func_graph from abstract.
|
||||
Description: Watching the function of getting func graph from abstract.
|
||||
Expectation: Output correct.
|
||||
"""
|
||||
|
||||
class Net(Cell):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.op = P.Add()
|
||||
|
||||
def construct(self, x, y):
|
||||
for t in range(2):
|
||||
if y != x:
|
||||
if x > 4:
|
||||
x = y / x
|
||||
y = 1 - x
|
||||
y = y - y
|
||||
elif x > 2:
|
||||
y = x - 1
|
||||
else:
|
||||
y = 3 - y
|
||||
y = t * x
|
||||
elif x != 3:
|
||||
x = x - x
|
||||
if x == y:
|
||||
continue
|
||||
return self.op(x, y)
|
||||
|
||||
x = np.array([4], np.float32)
|
||||
y = np.array([1], np.float32)
|
||||
net = Net()
|
||||
grad_net = F.grad(net, grad_position=(0, 1))
|
||||
fgrad = grad_net(Tensor(x), Tensor(y))
|
||||
assert fgrad[0] == Tensor([2], dtype.float32)
|
||||
assert fgrad[1] == Tensor([0], dtype.float32)
|
|
@ -70,41 +70,6 @@ def test_if_by_if_basic():
|
|||
assert np.allclose(out_ms.asnumpy(), out_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_tensor_condition():
|
||||
"""
|
||||
Feature: control flow function.
|
||||
Description: Switch condition is tensor determinate condition.
|
||||
Expectation: Null.
|
||||
"""
|
||||
|
||||
class Net(Cell):
|
||||
def construct(self, x, y):
|
||||
if x < 5:
|
||||
x = y + 2
|
||||
for p in range(1):
|
||||
x = p * x
|
||||
if x >= y:
|
||||
x = 2 * x
|
||||
|
||||
if x <= 5:
|
||||
x = 2 + y
|
||||
elif x >= 2:
|
||||
x = x * y
|
||||
|
||||
return x + y
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
x = np.array([3], np.float32)
|
||||
y = np.array([1], np.float32)
|
||||
net = Net()
|
||||
out = net(Tensor(x), Tensor(y))
|
||||
assert np.allclose(out.asnumpy(), np.array([4.], np.float32))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
|
|
@ -0,0 +1,126 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common import Tensor
|
||||
import mindspore.ops.operations as P
|
||||
import mindspore.ops.functional as F
|
||||
from mindspore import context
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_switch_simplify_avoid_dead_node():
|
||||
"""
|
||||
Feature: Switch simplify pass.
|
||||
Description: If switch simplify pass can't simplify constant tensor condition,
|
||||
dead node will exist in backend.
|
||||
Expectation: output correct.
|
||||
"""
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.op = P.Add()
|
||||
|
||||
def construct(self, x, y):
|
||||
if y != x:
|
||||
x = y - 3
|
||||
elif x == 4:
|
||||
for r in range(2):
|
||||
x = 1 / y
|
||||
if x > 2:
|
||||
y = y + 3
|
||||
y = y - y
|
||||
y = y * x
|
||||
elif y >= x:
|
||||
x = x * x
|
||||
elif x > y:
|
||||
x = y - r
|
||||
else:
|
||||
y = 2 + x
|
||||
for _ in range(2):
|
||||
x = x * y
|
||||
x = x - 3
|
||||
y = y + 2
|
||||
if x > 3:
|
||||
break
|
||||
if x > 2:
|
||||
break
|
||||
elif x == y:
|
||||
if y <= x:
|
||||
y = x / 2
|
||||
x = 3 + y
|
||||
x = x * 2
|
||||
elif x == 2:
|
||||
x = y * y
|
||||
elif x < y:
|
||||
y = 2 * y
|
||||
elif x != 2:
|
||||
y = x * y
|
||||
while x != 5:
|
||||
break
|
||||
return self.op(x, y)
|
||||
|
||||
x = np.array([4], np.float32)
|
||||
y = np.array([4], np.float32)
|
||||
net = Net()
|
||||
out = net(Tensor(x), Tensor(y))
|
||||
grad_net = F.grad(net, grad_position=(0, 1))
|
||||
fgrad = grad_net(Tensor(x), Tensor(y))
|
||||
sgrad_net = F.grad(grad_net)
|
||||
sgrad = sgrad_net(Tensor(x), Tensor(y))
|
||||
assert np.allclose(out.asnumpy(), np.array([-19.75], np.float32))
|
||||
assert np.allclose(fgrad[0].asnumpy(), np.array([0.], np.float32))
|
||||
assert np.allclose(fgrad[1].asnumpy(), np.array([-2.03125], np.float32))
|
||||
assert np.allclose(sgrad.asnumpy(), np.array([0.], np.float32))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_tensor_condition():
|
||||
"""
|
||||
Feature: control flow function.
|
||||
Description: Switch condition is tensor determinate condition.
|
||||
Expectation: Null.
|
||||
"""
|
||||
|
||||
class Net(Cell):
|
||||
def construct(self, x, y):
|
||||
if x < 5:
|
||||
x = y + 2
|
||||
for p in range(1):
|
||||
x = p * x
|
||||
if x >= y:
|
||||
x = 2 * x
|
||||
|
||||
if x <= 5:
|
||||
x = 2 + y
|
||||
elif x >= 2:
|
||||
x = x * y
|
||||
|
||||
return x + y
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
x = np.array([3], np.float32)
|
||||
y = np.array([1], np.float32)
|
||||
net = Net()
|
||||
out = net(Tensor(x), Tensor(y))
|
||||
assert np.allclose(out.asnumpy(), np.array([4.], np.float32))
|
Loading…
Reference in New Issue