forked from mindspore-Ecosystem/mindspore
!43996 fix doc of glu
Merge pull request !43996 from lianliguang/code_docs_ms
This commit is contained in:
commit
af9e68c5eb
|
@ -12,10 +12,10 @@ mindspore.nn.GLU
|
|||
其中,:math:`a` 表示输入Tensor的前一半元素,:math:`b` 表示输入Tensor的另一半元素。
|
||||
|
||||
参数:
|
||||
- **axis** (int) - 指定分割轴。数据类型为整型,默认值:0。
|
||||
- **axis** (int) - 指定分割轴。数据类型为整型,默认值:-1。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - Tensor的shape为 (x_1, x_2, ..., x_R)。x必须在axis 轴能够被平均分成两份。
|
||||
- **x** (Tensor) - Tensor的shape为 :math:`(\ast_1, N, \ast_2)` 。`x` 必须在 `axis` 轴能够被平均分成两份。
|
||||
|
||||
输出:
|
||||
Tensor,数据类型与输入 x 相同,shape等于 x 按照 axis 拆分后的一半。
|
||||
Tensor,数据类型与输入 `x` 相同,shape等于 `x` 按照 `axis` 拆分后的一半。
|
||||
|
|
|
@ -12,11 +12,11 @@ mindspore.ops.glu
|
|||
其中,:math:`a` 表示输入input_x 拆分后 Tensor的前一半元素,:math:`b` 表示输入拆分Tensor的另一半元素。
|
||||
|
||||
参数:
|
||||
- **axis** (int) - 指定分割轴。数据类型为整型,默认值:0。
|
||||
- **x** (Tensor) - Tensor的shape为 (x_1, x_2, ..., x_R) 。x 必须在axis 轴能够被平均分成两份。
|
||||
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` 。 `x` 必须在 `axis` 轴能够被平均分成两份。
|
||||
- **axis** (int) - 指定分割轴。数据类型为整型,默认值:-1。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型与输入 x 相同,shape等于 x 按照axis 拆分后的一半。
|
||||
Tensor,数据类型与输入 `x` 相同,shape等于 `x` 按照 `axis` 拆分后的一半。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 数据类型不是Number。
|
||||
|
|
|
@ -1498,18 +1498,21 @@ class GLU(Cell):
|
|||
axis (int): the dimension on which to split the input. Default: -1
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions
|
||||
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions.
|
||||
|
||||
Outputs:
|
||||
Tensor, :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
||||
Tensor, :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`, with the same dtype as the `x`.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> m = nn.GLU()
|
||||
>>> input = Tensor(np.randomn.randn(4, 2))
|
||||
>>> input = Tensor([[0.1,0.2,0.3,0.4],[0.5,0.6,0.7,0.8]])
|
||||
>>> output = m(input)
|
||||
>>> print(out)
|
||||
[[0.05744425 0.11973753
|
||||
[0.33409387 0.41398472]]
|
||||
"""
|
||||
|
||||
def __init__(self, axis=-1):
|
||||
|
|
|
@ -3142,10 +3142,10 @@ def glu(x, axis=-1):
|
|||
|
||||
Args:
|
||||
x (Tensor): :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions
|
||||
axis (int): the dimension on which to split the input. Default: -1
|
||||
axis (int): the dimension on which to split the input. Default: -1.
|
||||
|
||||
Returns:
|
||||
Tensor of shape :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`, with the same dtype and shape as the `x`.
|
||||
Tensor of shape :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`, with the same dtype as the `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `x` is not a number.
|
||||
|
@ -3155,9 +3155,11 @@ def glu(x, axis=-1):
|
|||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> m = nn.GLU()
|
||||
>>> input = Tensor(np.randomn.randn(4, 2))
|
||||
>>> output = m(input)
|
||||
>>> input = Tensor([[0.1,0.2,0.3,0.4],[0.5,0.6,0.7,0.8]])
|
||||
>>> output = ops.glu(input)
|
||||
>>> print(out)
|
||||
[[0.05744425 0.11973753
|
||||
[0.33409387 0.41398472]]
|
||||
"""
|
||||
if not isinstance(x, Tensor) or x.size == 0:
|
||||
raise RuntimeError("glu does not support scalars because halving size must be even")
|
||||
|
|
Loading…
Reference in New Issue