forked from mindspore-Ecosystem/mindspore
ReduceProd gpu kernel initial commit
update testcase fix ci fix ci
This commit is contained in:
parent
eb0bad4ad7
commit
ade26aa59f
|
@ -42,5 +42,11 @@ MS_REG_GPU_KERNEL_ONE(ReduceAny, KernelAttr().AddInputAttr(kNumberTypeBool).AddO
|
|||
ArrayReduceGpuKernel, bool)
|
||||
MS_REG_GPU_KERNEL_ONE(ReduceAll, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
ArrayReduceGpuKernel, bool)
|
||||
MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
ArrayReduceGpuKernel, int8_t)
|
||||
MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
ArrayReduceGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArrayReduceGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -27,9 +27,10 @@
|
|||
namespace mindspore {
|
||||
namespace kernel {
|
||||
const std::map<std::string, cudnnReduceTensorOp_t> kReduceTypeMap = {
|
||||
{"ReduceMax", CUDNN_REDUCE_TENSOR_MAX}, {"ReduceMean", CUDNN_REDUCE_TENSOR_AVG},
|
||||
{"ReduceSum", CUDNN_REDUCE_TENSOR_ADD}, {"ReduceMin", CUDNN_REDUCE_TENSOR_MIN},
|
||||
{"ReduceAny", CUDNN_REDUCE_TENSOR_MAX}, {"ReduceAll", CUDNN_REDUCE_TENSOR_MUL},
|
||||
{"ReduceMax", CUDNN_REDUCE_TENSOR_MAX}, {"ReduceMean", CUDNN_REDUCE_TENSOR_AVG},
|
||||
{"ReduceSum", CUDNN_REDUCE_TENSOR_ADD}, {"ReduceMin", CUDNN_REDUCE_TENSOR_MIN},
|
||||
{"ReduceAny", CUDNN_REDUCE_TENSOR_MAX}, {"ReduceAll", CUDNN_REDUCE_TENSOR_MUL},
|
||||
{"ReduceProd", CUDNN_REDUCE_TENSOR_MUL},
|
||||
};
|
||||
template <typename T>
|
||||
class ArrayReduceGpuKernel : public GpuKernel {
|
||||
|
|
|
@ -0,0 +1,170 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
x0 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
||||
axis0 = 3
|
||||
keep_dims0 = True
|
||||
|
||||
x1 = np.random.rand(2, 3, 4, 4).astype(np.float16)
|
||||
axis1 = 3
|
||||
keep_dims1 = False
|
||||
|
||||
x2 = np.random.rand(2, 3, 1, 4).astype(np.int8)
|
||||
axis2 = 2
|
||||
keep_dims2 = True
|
||||
|
||||
x3 = np.random.rand(2, 3, 1, 4).astype(np.float32)
|
||||
axis3 = 2
|
||||
keep_dims3 = False
|
||||
|
||||
x4 = np.random.rand(2, 3, 4, 4).astype(np.float16)
|
||||
axis4 = ()
|
||||
np_axis4 = None
|
||||
keep_dims4 = True
|
||||
|
||||
x5 = np.random.rand(2, 3, 4, 4).astype(np.int8)
|
||||
axis5 = ()
|
||||
np_axis5 = None
|
||||
keep_dims5 = False
|
||||
|
||||
x6 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
||||
axis6 = -2
|
||||
keep_dims6 = False
|
||||
|
||||
x7 = np.random.rand(2, 3, 4, 4).astype(np.float16)
|
||||
axis7 = (-2, -1)
|
||||
keep_dims7 = True
|
||||
|
||||
x8 = np.random.rand(1, 1, 1, 1).astype(np.float32)
|
||||
axis8 = ()
|
||||
np_axis8 = None
|
||||
keep_dims8 = True
|
||||
|
||||
|
||||
class ReduceProd(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ReduceProd, self).__init__()
|
||||
|
||||
self.x0 = Tensor(x0)
|
||||
self.axis0 = axis0
|
||||
self.keep_dims0 = keep_dims0
|
||||
|
||||
self.x1 = Tensor(x1)
|
||||
self.axis1 = axis1
|
||||
self.keep_dims1 = keep_dims1
|
||||
|
||||
self.x2 = Tensor(x2)
|
||||
self.axis2 = axis2
|
||||
self.keep_dims2 = keep_dims2
|
||||
|
||||
self.x3 = Tensor(x3)
|
||||
self.axis3 = axis3
|
||||
self.keep_dims3 = keep_dims3
|
||||
|
||||
self.x4 = Tensor(x4)
|
||||
self.axis4 = axis4
|
||||
self.keep_dims4 = keep_dims4
|
||||
|
||||
self.x5 = Tensor(x5)
|
||||
self.axis5 = axis5
|
||||
self.keep_dims5 = keep_dims5
|
||||
|
||||
self.x6 = Tensor(x6)
|
||||
self.axis6 = axis6
|
||||
self.keep_dims6 = keep_dims6
|
||||
|
||||
self.x7 = Tensor(x7)
|
||||
self.axis7 = axis7
|
||||
self.keep_dims7 = keep_dims7
|
||||
|
||||
self.x8 = Tensor(x8)
|
||||
self.axis8 = axis8
|
||||
self.keep_dims8 = keep_dims8
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return (P.ReduceProd(self.keep_dims0)(self.x0, self.axis0),
|
||||
P.ReduceProd(self.keep_dims1)(self.x1, self.axis1),
|
||||
P.ReduceProd(self.keep_dims2)(self.x2, self.axis2),
|
||||
P.ReduceProd(self.keep_dims3)(self.x3, self.axis3),
|
||||
P.ReduceProd(self.keep_dims4)(self.x4, self.axis4),
|
||||
P.ReduceProd(self.keep_dims5)(self.x5, self.axis5),
|
||||
P.ReduceProd(self.keep_dims6)(self.x6, self.axis6),
|
||||
P.ReduceProd(self.keep_dims7)(self.x7, self.axis7),
|
||||
P.ReduceProd(self.keep_dims8)(self.x8, self.axis8))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reduce_prod():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
reduce_max = ReduceProd()
|
||||
output = reduce_max()
|
||||
|
||||
expect1 = np.prod(x1, axis=axis1, keepdims=keep_dims1)
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.prod(x2, axis=axis2, keepdims=keep_dims2)
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape == expect2.shape
|
||||
|
||||
expect3 = np.prod(x3, axis=axis3, keepdims=keep_dims3)
|
||||
diff3 = abs(output[3].asnumpy() - expect3)
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output[3].shape == expect3.shape
|
||||
|
||||
expect4 = np.prod(x4, axis=np_axis4, keepdims=keep_dims4)
|
||||
diff4 = abs(output[4].asnumpy() - expect4)
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output[4].shape == expect4.shape
|
||||
|
||||
expect5 = np.prod(x5, axis=np_axis5, keepdims=keep_dims5)
|
||||
diff5 = abs(output[5].asnumpy() - expect5)
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert output[5].shape == expect5.shape
|
||||
|
||||
expect6 = np.prod(x6, axis=axis6, keepdims=keep_dims6)
|
||||
diff6 = abs(output[6].asnumpy() - expect6)
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert output[6].shape == expect6.shape
|
||||
|
||||
expect7 = np.prod(x7, axis=axis7, keepdims=keep_dims7)
|
||||
diff7 = abs(output[7].asnumpy() - expect7)
|
||||
error7 = np.ones(shape=expect7.shape) * 1.0e-5
|
||||
assert np.all(diff7 < error7)
|
||||
|
||||
expect8 = np.prod(x8, axis=np_axis8, keepdims=keep_dims8)
|
||||
diff8 = abs(output[8].asnumpy() - expect8)
|
||||
error8 = np.ones(shape=expect8.shape) * 1.0e-5
|
||||
assert np.all(diff8 < error8)
|
Loading…
Reference in New Issue