!16028 Add identity op for cpu and gpu

From: @xcnick
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-05-25 22:01:44 +08:00 committed by Gitee
commit abb6192daa
13 changed files with 523 additions and 18 deletions

View File

@ -13,6 +13,7 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cmath>
#include <string>
#include <thread>
@ -251,6 +252,11 @@ void Atanh(const T *in, T *out, size_t size) {
};
CPUKernelUtils::ParallelFor(task, size);
}
template <typename T>
void Identity(const T *in, T *out, size_t size) {
std::copy(in, in + size, out);
}
} // namespace
static const std::map<std::string, OperateType> kArithmeticOpTypeMap = {{prim::kPrimNeg->name(), NEG},
@ -274,7 +280,8 @@ static const std::map<std::string, OperateType> kArithmeticOpTypeMap = {{prim::k
{prim::kPrimCosh->name(), COSH},
{prim::kPrimAsinh->name(), ASINH},
{prim::kPrimAcosh->name(), ACOSH},
{prim::kPrimAtanh->name(), ATANH}};
{prim::kPrimAtanh->name(), ATANH},
{prim::kPrimIdentityMath->name(), IDENTITY}};
void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
@ -335,5 +342,16 @@ void ArithmeticSelfCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs
MS_LOG(EXCEPTION) << "Not support " << operate_type_;
}
}
template <typename T>
bool IdentityCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
T *input = reinterpret_cast<T *>(inputs[0]->addr);
T *output = reinterpret_cast<T *>(outputs[0]->addr);
size_t lens = outputs[0]->size > 0 ? static_cast<size_t>(outputs[0]->size / sizeof(T)) : 1;
Identity<T>(input, output, lens);
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -43,6 +43,16 @@ class ArithmeticSelfCPUKernel : public CPUKernel {
TypeId target_dtype_{kTypeUnknown};
};
template <typename T>
class IdentityCPUKernel : public ArithmeticSelfCPUKernel {
public:
IdentityCPUKernel() = default;
~IdentityCPUKernel() override = default;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
};
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
@ -97,6 +107,31 @@ MS_REG_CPU_KERNEL(Acosh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutput
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Atanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
IdentityCPUKernel, uint64_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
IdentityCPUKernel, int64_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
IdentityCPUKernel, uint32_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
IdentityCPUKernel, int32_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
IdentityCPUKernel, uint16_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
IdentityCPUKernel, int16_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
IdentityCPUKernel, uint8_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
IdentityCPUKernel, int8_t);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
IdentityCPUKernel, double);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
IdentityCPUKernel, float);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
IdentityCPUKernel, float16);
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
IdentityCPUKernel, bool);
} // namespace kernel
} // namespace mindspore

View File

@ -118,6 +118,7 @@ enum OperateType {
ATAN2,
RINT,
ROUND,
IDENTITY,
};
class CPUKernel : public kernel::KernelMod {

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -14,10 +14,10 @@
* limitations under the License.
*/
#include "identity_impl.cuh"
#include "eye_impl.cuh"
#include <iostream>
template <typename T>
__global__ void IdentityKernel(const size_t size, const size_t dim, T *output_addr) {
__global__ void EyeKernel(const size_t size, const size_t dim, T *output_addr) {
for (size_t pointIdx = blockIdx.x * blockDim.x + threadIdx.x; pointIdx < (size); pointIdx += blockDim.x * gridDim.x) {
size_t batchIdx = pointIdx / (dim * dim);
size_t dst_x = (pointIdx - batchIdx * dim * dim) / dim;
@ -31,10 +31,9 @@ __global__ void IdentityKernel(const size_t size, const size_t dim, T *output_ad
}
template <typename T>
void Identity(const size_t size, const size_t dim, T *output_addr, cudaStream_t cuda_stream) {
IdentityKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dim, output_addr);
void Eye(const size_t size, const size_t dim, T *output_addr, cudaStream_t cuda_stream) {
EyeKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dim, output_addr);
return;
}
template void Identity<float>(const size_t size, const size_t dim, float *output_addr, cudaStream_t cuda_stream);
template void Eye<float>(const size_t size, const size_t dim, float *output_addr, cudaStream_t cuda_stream);

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -14,11 +14,11 @@
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_IDENTITY_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_IDENTITY_H_
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_EYE_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_EYE_H_
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
void Identity(const size_t size, const size_t dim, T *output_addr, cudaStream_t cuda_stream);
void Eye(const size_t size, const size_t dim, T *output_addr, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_MATRIXSPLIT_H_
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_EYE_H_

View File

@ -20,7 +20,7 @@
#include <cuda_runtime_api.h>
#include <vector>
#include <algorithm>
#include "backend/kernel_compiler/gpu/cuda_impl/identity_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/eye_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/matrix_split_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/triangle_matrix_copy_impl.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
@ -79,7 +79,7 @@ class CholeskyGpuKernel : public GpuKernel {
h_array[i] = d_batch_input_addr + i * lda_ * m_;
h_identity[i] = output_addr + i * ldb_ * m_;
}
Identity(batch_ * split_dim * split_dim, split_dim, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
Eye(batch_ * split_dim * split_dim, split_dim, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
MatrixSplit(batch_ * split_dim * split_dim, split_dim, width, input1_addr, d_batch_input_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDA_RET_WITH_ERROR(kernel_node_,

View File

@ -20,7 +20,7 @@
#include <cuda_runtime_api.h>
#include <vector>
#include <algorithm>
#include "backend/kernel_compiler/gpu/cuda_impl/identity_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/eye_impl.cuh"
#include "backend/kernel_compiler/gpu/cuda_impl/matrix_split_impl.cuh"
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
@ -149,7 +149,7 @@ class CholeskyTrsmGpuKernel : public GpuKernel {
h_array[i] = d_batch_input_addr + i * lda_ * m_;
h_identity[i] = output_addr + i * ldb_ * m_;
}
Identity(batch_ * split_dim * split_dim, split_dim, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
Eye(batch_ * split_dim * split_dim, split_dim, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
MatrixSplit(batch_ * split_dim * split_dim, split_dim, width, input1_addr, d_batch_input_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDA_RET_WITH_ERROR(kernel_node_,

View File

@ -0,0 +1,46 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/math/identity_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
IdentityGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
IdentityGpuKernel, float);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
IdentityGpuKernel, half);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
IdentityGpuKernel, uint64_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
IdentityGpuKernel, int64_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
IdentityGpuKernel, uint32_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
IdentityGpuKernel, int32_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
IdentityGpuKernel, uint16_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
IdentityGpuKernel, int16_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
IdentityGpuKernel, uint8_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
IdentityGpuKernel, int8_t);
MS_REG_GPU_KERNEL_ONE(Identity, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
IdentityGpuKernel, bool);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,104 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_IDENTITY_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_IDENTITY_GPU_KERNEL_H_
#include <cuda_runtime_api.h>
#include <vector>
#include <string>
#include <map>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class IdentityGpuKernel : public GpuKernel {
public:
IdentityGpuKernel() { ResetResource(); }
~IdentityGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input_addr = GetDeviceAddress<T>(inputs, 0);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(output_addr, input_addr, inputs[0]->size, cudaMemcpyDeviceToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync failed in IdentityGpuKernel::Lanuch");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but identity needs 1 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but identity needs 1 output.";
return false;
}
auto input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "IdentityGpuKernel input is null";
InitSizeLists();
return true;
}
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}
output_size_ = input_size_;
InitSizeLists();
return true;
}
void ResetResource() noexcept override {
input_size_ = sizeof(T);
output_size_ = sizeof(T);
workspace_size_ = 0;
is_null_input_ = false;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
}
private:
size_t input_size_;
size_t output_size_;
size_t workspace_size_;
bool is_null_input_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_IDENTITY_GPU_KERNEL_H_

View File

@ -435,6 +435,7 @@ inline const PrimitivePtr kPrimACosGrad = std::make_shared<Primitive>("ACosGrad"
inline const PrimitivePtr kPrimAtanGrad = std::make_shared<Primitive>("AtanGrad");
inline const PrimitivePtr kPrimFloorMod = std::make_shared<Primitive>("FloorMod");
inline const PrimitivePtr kPrimWhere = std::make_shared<Primitive>("Where");
inline const PrimitivePtr kPrimIdentityMath = std::make_shared<Primitive>("Identity", kSideEffectPropagate);
// Statements
inline const PrimitivePtr kPrimReturn = std::make_shared<Primitive>("Return");

View File

@ -5150,7 +5150,7 @@ class Identity(PrimitiveWithInfer):
TypeError: If `x` is not a Tensor.
Supported Platforms:
``Ascend``
``Ascend`` ``CPU`` ``GPU``
Examples:
>>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64)

View File

@ -68,6 +68,15 @@ class RintNet(nn.Cell):
return self.rint(x)
class IdentityNet(nn.Cell):
def __init__(self):
super(IdentityNet, self).__init__()
self.identity = P.Identity()
def construct(self, x):
return self.identity(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@ -189,3 +198,163 @@ def test_reciprocal():
diff = output.asnumpy() - expect_output
error = np.ones(shape=expect_output.shape) * 1.0e-5
assert np.all(np.abs(diff) < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_identity_pynative():
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
net = IdentityNet()
x = np.random.randn(3, 4, 5, 6).astype(np.float64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.float32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.float16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint8)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int8)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.bool)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_identity_graph():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
net = IdentityNet()
x = np.random.randn(3, 4, 5, 6).astype(np.float64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.float32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.float16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int64)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int32)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int16)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.uint8)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.int8)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
x = np.random.randn(3, 4, 5, 6).astype(np.bool)
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)

View File

@ -0,0 +1,132 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ops
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.identity = ops.Identity()
def construct(self, x):
return self.identity(x)
def generate_testcases(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.random.randn(3, 4, 5, 6).astype(nptype)
net = Net()
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x = np.random.randn(3, 4, 5, 6).astype(nptype)
net = Net()
input_tensor = Tensor(x)
output = net(input_tensor)
np.testing.assert_almost_equal(output.asnumpy(), input_tensor.asnumpy())
assert id(input_tensor) != id(output)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_float64():
generate_testcases(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_float32():
generate_testcases(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_float16():
generate_testcases(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_uint64():
generate_testcases(np.uint64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_int64():
generate_testcases(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_uint32():
generate_testcases(np.uint32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_int32():
generate_testcases(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_uint16():
generate_testcases(np.uint16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_int16():
generate_testcases(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_uint8():
generate_testcases(np.uint8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_int8():
generate_testcases(np.int8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_identity_bool():
generate_testcases(np.bool)