forked from mindspore-Ecosystem/mindspore
!17663 Adding SearchSorted Operator in CPU
From: @huangbo77 Reviewed-by: @wuxuejian,@liangchenghui Signed-off-by: @wuxuejian
This commit is contained in:
commit
a3d4dc5c2b
|
@ -0,0 +1,109 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/searchsorted_cpu_kernel.h"
|
||||
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
#include <functional>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
constexpr size_t kInputSize = 2;
|
||||
constexpr size_t kOutputSize = 1;
|
||||
} // namespace
|
||||
|
||||
template <typename S, typename T>
|
||||
void SearchSortedCPUKernel<S, T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
right_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "right");
|
||||
sequence_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
values_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
search_len = sequence_shape_.back();
|
||||
}
|
||||
|
||||
template <typename S, typename T>
|
||||
const S *SearchSortedCPUKernel<S, T>::CustomizedLowerBound(const S *seq_start, const S *seq_end, const S key) {
|
||||
while (seq_start < seq_end) {
|
||||
const S *mid = seq_start + ((seq_end - seq_start) >> 1);
|
||||
if (!(key <= *mid)) {
|
||||
seq_start = mid + 1;
|
||||
} else {
|
||||
seq_end = mid;
|
||||
}
|
||||
}
|
||||
return seq_start;
|
||||
}
|
||||
|
||||
template <typename S, typename T>
|
||||
bool SearchSortedCPUKernel<S, T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CheckParam(inputs, outputs);
|
||||
auto sequence = reinterpret_cast<S *>(inputs[0]->addr);
|
||||
auto values = reinterpret_cast<S *>(inputs[1]->addr);
|
||||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
size_t elem_num = inputs[1]->size / sizeof(S);
|
||||
size_t seq_dim = sequence_shape_.size();
|
||||
size_t search_repeat = values_shape_.back();
|
||||
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
auto seq_start = (seq_dim == 1) ? sequence : sequence + (i / search_repeat) * search_len;
|
||||
output[i] = right_ ? std::upper_bound(seq_start, seq_start + search_len, values[i]) - seq_start
|
||||
: CustomizedLowerBound(seq_start, seq_start + search_len, values[i]) - seq_start;
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, elem_num);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename S, typename T>
|
||||
void SearchSortedCPUKernel<S, T>::CheckParam(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
// inputs: sequence, values
|
||||
if (inputs.size() != kInputSize) {
|
||||
MS_LOG(EXCEPTION) << "Input number is: " << inputs.size() << ", but SearchSorted needs" << kInputSize << " inputs.";
|
||||
}
|
||||
|
||||
// outputs: positions
|
||||
if (outputs.size() != kOutputSize) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but SearchSorted needs " << kOutputSize
|
||||
<< " outputs";
|
||||
}
|
||||
|
||||
if (outputs[0]->size / sizeof(T) != inputs[1]->size / sizeof(S)) {
|
||||
MS_LOG(EXCEPTION) << "The output dimensions " << outputs[0]->size << " must match the dimensions of input values "
|
||||
<< inputs[1]->size;
|
||||
}
|
||||
|
||||
auto sequence = reinterpret_cast<S *>(inputs[0]->addr);
|
||||
size_t list_count = accumulate(sequence_shape_.begin(), sequence_shape_.end() - 1, 1, std::multiplies<int>());
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
for (size_t j = 0; j < search_len - 1; j++) {
|
||||
if (sequence[i * search_len + j] > sequence[i * search_len + j + 1]) {
|
||||
MS_LOG(EXCEPTION) << "The input sequence must be sorted.";
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, list_count);
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,111 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCHSORTED_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCHSORTED_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename S, typename T>
|
||||
class SearchSortedCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SearchSortedCPUKernel() = default;
|
||||
~SearchSortedCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
const S *CustomizedLowerBound(const S *seq_start, const S *seq_end, const S key);
|
||||
void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
bool right_{false};
|
||||
std::vector<size_t> sequence_shape_;
|
||||
std::vector<size_t> values_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
size_t search_len;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, double, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, float, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, int64_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, int32_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, int16_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt32),
|
||||
SearchSortedCPUKernel, int8_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, double, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, float, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, int64_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, int32_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, int16_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(
|
||||
SearchSorted,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt64),
|
||||
SearchSortedCPUKernel, int8_t, int64_t);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCHSORTED_CPU_KERNEL_H_
|
|
@ -33,7 +33,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Stack, Unpack, Unsta
|
|||
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentMax,
|
||||
UnsortedSegmentProd, UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch,
|
||||
BatchToSpace, SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence,
|
||||
EmbeddingLookup, Unique, GatherD, Identity, Range, MaskedSelect)
|
||||
EmbeddingLookup, Unique, GatherD, Identity, Range, MaskedSelect, SearchSorted)
|
||||
from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast,
|
||||
_MirrorOperator, _MirrorMiniStepOperator, _MiniStepAllGather, ReduceOp, _VirtualDataset,
|
||||
_VirtualOutput, _VirtualDiv, _GetTensorSlice, _VirtualAdd,
|
||||
|
@ -438,6 +438,7 @@ __all__ = [
|
|||
"SparseTensorDenseMatmul",
|
||||
"MatrixInverse",
|
||||
"Range",
|
||||
"SearchSorted",
|
||||
"IndexAdd",
|
||||
"PQC",
|
||||
"Evolution",
|
||||
|
|
|
@ -5349,3 +5349,58 @@ class MaskedSelect(PrimitiveWithCheck):
|
|||
|
||||
def check_dtype(self, x_dtype, mask_dtype):
|
||||
validator.check_tensor_dtype_valid('mask', mask_dtype, [mstype.bool_], self.name)
|
||||
|
||||
class SearchSorted(PrimitiveWithInfer):
|
||||
"""
|
||||
Find the indices from the innermost dimension of `sequence` such that the order of the innermost dimension
|
||||
within `sequence` would be preserved when the corresponding values in `values` were inserted before the indices.
|
||||
|
||||
Args:
|
||||
out_int32 (bool): Output datatype. Optional. If True, the output datatype will be int32;
|
||||
if False, the output datatype will be int64. Default is False.
|
||||
right (bool): Search Strategy. Optional. If True, return the last suitable index found.
|
||||
If False, return the first such index. Default is False.
|
||||
|
||||
Inputs:
|
||||
- **sequence** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_R)` or `(x_1)`.
|
||||
It must contain monitonically increasing sequence on the innermost dimension.
|
||||
- **values** (Tensor) - The shape of tensor is : math:`(x_1, x_2, ..., x_R-1, x_S)`.
|
||||
|
||||
Outputs:
|
||||
Tensor containing the indices from the innermost dimension of the input sequence such that,
|
||||
if insert the corresponding value in the values tensor, the order of the tensor sequence would be preserved.
|
||||
The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_S)`,
|
||||
whose datatype is int32 if out_int32 is True, otherwise int64, and shape is the same as the shape of values.
|
||||
|
||||
Raises:
|
||||
ValueError: If `sequence` and `values` do not have proper shapes.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
||||
Examples:
|
||||
>>> sequence = Tensor(np.array([[0, 1, 3, 5, 7], [2, 4, 6, 8, 10]]), mindspore.float32)
|
||||
>>> values = Tensor(np.array([[3, 6, 9], [3, 6, 9]]), mindspore.float32)
|
||||
>>> output = ops.SearchSorted()(sequence, values)
|
||||
>>> print(output)
|
||||
[[2, 4, 5]
|
||||
[1, 2, 4]]
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self, out_int32=False, right=False):
|
||||
"""Initialize SearchSorted"""
|
||||
self.out_int32 = validator.check_value_type("out_int32", out_int32, [bool], self.name)
|
||||
self.right = validator.check_value_type("right", right, [bool], self.name)
|
||||
self.init_prim_io_names(inputs=['sequence', 'values'], outputs=['positions'])
|
||||
|
||||
def infer_shape(self, sequence_shape, values_shape):
|
||||
if len(sequence_shape) != 1 and sequence_shape[:-1] != values_shape[:-1]:
|
||||
raise ValueError(f"Sequence should be 1 dimensional or has all but the last dimension matching "
|
||||
f" the dimensions of values, but got sequence's dimensions: {sequence_shape} "
|
||||
f"and values' dimensions: {values_shape}.")
|
||||
return values_shape
|
||||
|
||||
def infer_dtype(self, sequence_dtype, values_dtype):
|
||||
args = {"sequence_dtype": sequence_dtype, "values_dtype": values_dtype}
|
||||
validator.check_tensors_dtypes_same_and_valid(args, mstype.number_type, self.name)
|
||||
return mstype.tensor_type(mstype.int32) if self.out_int32 else mstype.tensor_type(mstype.int64)
|
||||
|
|
|
@ -0,0 +1,115 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class SearchSortedNet(nn.Cell):
|
||||
def __init__(self, out_int32=False, right=False):
|
||||
super(SearchSortedNet, self).__init__()
|
||||
self.searchsorted = P.SearchSorted(out_int32=out_int32, right=right)
|
||||
|
||||
def construct(self, sequence, values):
|
||||
return self.searchsorted(sequence, values)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_right_out32():
|
||||
np.random.seed(1)
|
||||
input1 = np.sort(np.array(np.random.randint(10, size=(2, 3, 9)), dtype=np.int32), axis=-1)
|
||||
sequence = Tensor(input1, mstype.int32)
|
||||
input2 = np.array(np.random.randint(10, size=(2, 3, 1)), dtype=np.int32)
|
||||
values = Tensor(input2, mstype.int32)
|
||||
|
||||
net = SearchSortedNet(out_int32=True, right=True)
|
||||
output = net(sequence, values)
|
||||
|
||||
expect = [[[9],
|
||||
[3],
|
||||
[6]],
|
||||
[[5],
|
||||
[9],
|
||||
[8]]]
|
||||
assert output.dtype == mstype.int32
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_out32():
|
||||
np.random.seed(1)
|
||||
input1 = np.sort(np.array(np.random.randint(10, size=(2, 3, 9)), dtype=np.int64), axis=-1)
|
||||
sequence = Tensor(input1, mstype.int64)
|
||||
input2 = np.array(np.random.randint(10, size=(2, 3, 1)), dtype=np.int64)
|
||||
values = Tensor(input2, mstype.int64)
|
||||
|
||||
net = SearchSortedNet(out_int32=True, right=False)
|
||||
output = net(sequence, values)
|
||||
|
||||
expect = [[[8],
|
||||
[0],
|
||||
[3]],
|
||||
[[5],
|
||||
[8],
|
||||
[7]]]
|
||||
assert output.dtype == mstype.int32
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_right_out64():
|
||||
np.random.seed(1)
|
||||
input1 = np.sort(np.array(np.random.random((2, 5)), dtype=np.float32), axis=-1)
|
||||
sequence = Tensor(input1, mstype.float32)
|
||||
input2 = np.array(np.random.random((2, 3)), dtype=np.float32)
|
||||
values = Tensor(input2, mstype.float32)
|
||||
|
||||
net = SearchSortedNet(out_int32=False, right=True)
|
||||
output = net(sequence, values)
|
||||
|
||||
expect = [[4, 4, 2],
|
||||
[5, 0, 5]]
|
||||
assert output.dtype == mstype.int64
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_out64():
|
||||
np.random.seed(1)
|
||||
input1 = np.sort(np.array(np.random.random((5)), dtype=np.float64), axis=-1)
|
||||
sequence = Tensor(input1, mstype.float64)
|
||||
input2 = np.array(np.random.random((2, 3)), dtype=np.float64)
|
||||
values = Tensor(input2, mstype.float64)
|
||||
|
||||
net = SearchSortedNet(out_int32=False, right=False)
|
||||
output = net(sequence, values)
|
||||
|
||||
expect = [[1, 2, 3],
|
||||
[3, 4, 4]]
|
||||
assert output.dtype == mstype.int64
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in New Issue