- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [Transfomer Description](#contents)
## [Transfomer Description](#contents)
Transformer was proposed in 2017 and designed to process sequential data. It is adopted mainly in the field of natural language processing(NLP), for tasks like machine translation or text summarization. Unlike traditional recurrent neural network(RNN) which processes data in order, Transformer adopts attention mechanism and improve the parallelism, therefore reduced training times and made training on larger datasets possible. Since Transformer model was introduced, it has been used to tackle many problems in NLP and derives many network models, such as BERT(Bidirectional Encoder Representations from Transformers) and GPT(Generative Pre-trained Transformer).
[Paper](https://arxiv.org/abs/1706.03762): Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan N Gomez, Ł ukaszKaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS 2017, pages 5998–6008.
# [Model Architecture](#contents)
## [Model Architecture](#contents)
Specifically, Transformer contains six encoder modules and six decoder modules. Each encoder module consists of a self-attention layer and a feed forward layer, each decoder module consists of a self-attention layer, a encoder-decoder-attention layer and a feed forward layer.
# [Dataset](#contents)
## [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
- *WMT Englis-German* for training.
- *WMT newstest2014* for evaluation.
- *WMT newstest2014* for evaluation.
# [Environment Requirements](#contents)
## [Environment Requirements](#contents)
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
--bucket_boundaries sequence lengths for different bucket: LIST, default is [16, 32, 48, 64, 128]
```
### Running Options
```
#### Running Options
```text
config.py:
transformer_network version of Transformer model: base | large, default is large
init_loss_scale_value initial value of loss scale: N, default is 2^10
@ -139,8 +135,9 @@ eval_config.py:
output_file output file of evaluation: PATH
```
### Network Parameters
```
#### Network Parameters
```text
Parameters for dataset and network (Training/Evaluation):
batch_size batch size of input dataset: N, default is 96
seq_length max length of input sequence: N, default is 128
@ -155,7 +152,6 @@ Parameters for dataset and network (Training/Evaluation):
max_position_embeddings maximum length of sequences: N, default is 128
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
label_smoothing label smoothing setting: Q, default is 0.1
input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
beam_width beam width setting: N, default is 4
max_decode_length max decode length in evaluation: N, default is 80
length_penalty_weight normalize scores of translations according to their length: Q, default is 1.0
@ -169,13 +165,14 @@ Parameters for learning rate:
```
## [Dataset Preparation](#contents)
- You may use this [shell script](https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh) to download and preprocess WMT English-German dataset. Assuming you get the following files:
- train.tok.clean.bpe.32000.en
- train.tok.clean.bpe.32000.de
- vocab.bpe.32000
- newstest2014.tok.bpe.32000.en
- newstest2014.tok.bpe.32000.de
- newstest2014.tok.de
- train.tok.clean.bpe.32000.en
- train.tok.clean.bpe.32000.de
- vocab.bpe.32000
- newstest2014.tok.bpe.32000.en
- newstest2014.tok.bpe.32000.de
- newstest2014.tok.de
- Convert the original data to mindrecord for training:
- Set options in `config.py`, including loss_scale, learning rate and network hyperparameters. Click [here](https://www.mindspore.cn/tutorial/training/zh-CN/master/use/data_preparation.html) for more information about dataset.
@ -200,13 +197,13 @@ Parameters for learning rate:
``` bash
sh scripts/run_standalone_train.sh DEVICE_TARGET DEVICE_ID EPOCH_SIZE DATA_PATH
```
- Run `run_distribute_train_ascend.sh` for distributed training of Transformer model.
``` bash
sh scripts/run_distribute_train_ascend.sh DEVICE_NUM EPOCH_SIZE DATA_PATH RANK_TABLE_FILE
```
## [Evaluation Process](#contents)
- Set options in `eval_config.py`. Make sure the 'data_file', 'model_file' and 'output_file' are set to your own path.
@ -222,6 +219,7 @@ Parameters for learning rate:
```bash
sh scripts/process_output.sh REF_DATA EVAL_OUTPUT VOCAB_FILE
```
You will get two files, REF_DATA.forbleu and EVAL_OUTPUT.forbleu, for BLEU score calculation.
- Calculate BLEU score, you may use this [perl script](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl) and run following command to get the BLEU score.
@ -230,10 +228,11 @@ Parameters for learning rate:
@ -264,17 +262,16 @@ Parameters for learning rate:
| outputs | BLEU score |
| Accuracy | BLEU=28.7 |
# [Description of Random Situation](#contents)
## [Description of Random Situation](#contents)
There are three random situations:
- Shuffle of the dataset.
- Initialization of some model weights.
- Dropout operations.
Some seeds have already been set in train.py to avoid the randomness of dataset shuffle and weight initialization. If you want to disable dropout, please set the corresponding dropout_prob parameter to 0 in src/config.py.
# [ModelZoo Homepage](#contents)
## [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).