forked from mindspore-Ecosystem/mindspore
!30728 add ci test for unify backend
Merge pull request !30728 from xiaoyao/master
This commit is contained in:
commit
a064d0855b
|
@ -119,10 +119,12 @@ std::shared_ptr<MsContext> MsContext::GetInstance() {
|
|||
|
||||
bool MsContext::set_backend_policy(const std::string &policy) {
|
||||
auto policy_new = policy;
|
||||
#ifdef ENABLE_D
|
||||
auto enable_ge = mindspore::common::GetEnv("MS_ENABLE_GE");
|
||||
if (enable_ge == "1") {
|
||||
policy_new = "ge";
|
||||
}
|
||||
#endif
|
||||
if (policy_map_.find(policy_new) == policy_map_.end()) {
|
||||
MS_LOG(ERROR) << "invalid backend policy name: " << policy_new;
|
||||
return false;
|
||||
|
|
|
@ -18,7 +18,6 @@ import pytest
|
|||
from mindspore import log as logger
|
||||
from tests.st.model_zoo_tests import utils
|
||||
|
||||
|
||||
@pytest.mark.level2
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
|
@ -50,7 +49,6 @@ def test_resnet50_cifar10_ascend():
|
|||
loss_list.append(loss[-1])
|
||||
assert sum(loss_list) / len(loss_list) < 0.70
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_single
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
"""
|
||||
test nn.Triu()
|
||||
"""
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
|
@ -23,21 +24,38 @@ from mindspore import context
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
class TriuNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(TriuNet, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
triu = nn.Triu()
|
||||
return triu(self.value, 0)
|
||||
|
||||
def test_triu():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
triu = nn.Triu()
|
||||
return triu(self.value, 0)
|
||||
|
||||
net = Net()
|
||||
"""
|
||||
Feature: None
|
||||
Description: test TriuNet with vm backend
|
||||
Expectation: None
|
||||
"""
|
||||
net = TriuNet()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 26
|
||||
|
||||
def test_triu_ge():
|
||||
"""
|
||||
Feature: unify ge and vm backend
|
||||
Description: test TriuNet with ge backend
|
||||
Expectation: None
|
||||
"""
|
||||
os.environ['MS_ENABLE_GE'] = "1"
|
||||
os.environ['MS_GE_TRAIN'] = "0"
|
||||
net = TriuNet()
|
||||
out = net()
|
||||
del os.environ['MS_GE_TRAIN']
|
||||
del os.environ['MS_ENABLE_GE']
|
||||
assert np.sum(out.asnumpy()) == 26
|
||||
|
||||
def test_triu_1():
|
||||
class Net(nn.Cell):
|
||||
|
@ -71,9 +89,6 @@ def test_triu_2():
|
|||
|
||||
def test_triu_parameter():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, 0)
|
||||
|
@ -84,9 +99,6 @@ def test_triu_parameter():
|
|||
|
||||
def test_triu_parameter_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, 1)
|
||||
|
@ -97,9 +109,6 @@ def test_triu_parameter_1():
|
|||
|
||||
def test_triu_parameter_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, -1)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_for_stmt """
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
|
||||
|
@ -91,6 +92,15 @@ def test_op_seq_test():
|
|||
input_me = Tensor(input_np)
|
||||
net(input_me)
|
||||
|
||||
def test_op_seq_test_ge():
|
||||
"""
|
||||
Feature: unify ge and vm backend
|
||||
Description: test op seq with ge backend
|
||||
Expectation: None
|
||||
"""
|
||||
os.environ['MS_ENABLE_GE'] = "1"
|
||||
test_op_seq_test()
|
||||
del os.environ['MS_ENABLE_GE']
|
||||
|
||||
_grad_fusion = C.MultitypeFuncGraph("grad_fushion")
|
||||
|
||||
|
@ -124,3 +134,13 @@ def test_allreduce_fushio_test():
|
|||
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
input_me = Tensor(input_np)
|
||||
net(input_me)
|
||||
|
||||
def test_allreduce_fushio_test_ge():
|
||||
"""
|
||||
Feature: unify ge and vm backend
|
||||
Description: test allreduce fushio with ge backend
|
||||
Expectation: None
|
||||
"""
|
||||
os.environ['MS_ENABLE_GE'] = "1"
|
||||
test_allreduce_fushio_test()
|
||||
del os.environ['MS_ENABLE_GE']
|
||||
|
|
Loading…
Reference in New Issue