forked from mindspore-Ecosystem/mindspore
!15389 convert the implementation of BroadCastTo, ReluGrad, ReLU6Grad CPU operators to nnacl
From: @zhangbuxue Reviewed-by: @guoqi1024,@zhanyuan1,@zhaizhiqiang Signed-off-by: @zhaizhiqiang
This commit is contained in:
commit
a017ba48ae
|
@ -15,80 +15,42 @@
|
|||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/broadcast_to_cpu_kernel.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
void BroadcastToCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
size_t input_shape_size = input_shape_.size();
|
||||
size_t output_shape_size = output_shape_.size();
|
||||
|
||||
size_t offset = output_shape_.size() - input_shape_.size();
|
||||
for (size_t i = 0; i < offset; ++i) {
|
||||
input_shape_.insert(input_shape_.begin(), 1);
|
||||
if (output_shape_size < input_shape_size) {
|
||||
MS_LOG(EXCEPTION) << "Cannot broadcast input tensor with shape " << input_shape_
|
||||
<< " to a smaller dimension shape " << output_shape_ << ".";
|
||||
}
|
||||
if (output_shape_size > MAX_SHAPE_SIZE) {
|
||||
MS_LOG(EXCEPTION) << "Cannot broadcast input tensor with shape " << input_shape_ << " to a shape " << output_shape_
|
||||
<< " more than 8-D.";
|
||||
}
|
||||
size_t offset = output_shape_size - input_shape_size;
|
||||
for (size_t i = 0; i < input_shape_size; ++i) {
|
||||
if (input_shape_[i] != output_shape_[i + offset] && input_shape_[i] != 1) {
|
||||
MS_LOG(EXCEPTION) << "Cannot broadcast input tensor with shape " << input_shape_ << " to a shape "
|
||||
<< output_shape_ << ".";
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < input_shape_.size(); ++i) {
|
||||
if (output_shape_[i] < input_shape_[i] || output_shape_[i] % input_shape_[i] != 0) {
|
||||
MS_LOG(EXCEPTION) << "Cannot broadcast input tensor with shape " << input_shape_ << " to "
|
||||
<< "output tensor with shape " << output_shape_
|
||||
<< ". Output shape must be the integer times of input shape at the " << i << " dim!";
|
||||
}
|
||||
for (size_t i = 0; i < input_shape_size; ++i) {
|
||||
shape_info_.input_shape_[i] = SizeToInt(input_shape_[i]);
|
||||
}
|
||||
for (size_t j = 0; j < output_shape_.size(); j++) {
|
||||
nums_ *= output_shape_[j];
|
||||
}
|
||||
|
||||
tmp_ptr_ = reinterpret_cast<T *>(malloc(nums_ * sizeof(T)));
|
||||
}
|
||||
|
||||
// BroadcastTo
|
||||
template <typename T>
|
||||
void BroadcastToCPUKernel<T>::BroadcastToImpl(size_t dim) {
|
||||
if (dim == output_shape_.size() - 1) {
|
||||
size_t input_nums = 1;
|
||||
for (size_t j = 0; j < input_shape_.size() - 1; ++j) {
|
||||
input_nums *= input_shape_[j];
|
||||
}
|
||||
size_t rate = output_shape_[dim] / input_shape_[dim];
|
||||
|
||||
for (size_t j = 0; j < input_nums; ++j) {
|
||||
T *in_ptr = input_ptr_ + input_shape_[dim] * j;
|
||||
for (size_t i = 0; i < rate; ++i) {
|
||||
T *out_ptr = tmp_ptr_ + (j * rate + i) * input_shape_[dim];
|
||||
memcpy_s(out_ptr, input_shape_[dim] * sizeof(T), in_ptr, input_shape_[dim] * sizeof(T));
|
||||
}
|
||||
}
|
||||
size_t elems = input_shape_[dim] * rate * input_nums;
|
||||
memcpy_s(output_ptr_, elems * sizeof(T), tmp_ptr_, elems * sizeof(T));
|
||||
return;
|
||||
}
|
||||
|
||||
BroadcastToImpl(dim + 1);
|
||||
|
||||
size_t rate = output_shape_[dim] / input_shape_[dim];
|
||||
if (rate > 1) {
|
||||
size_t elems_nums = 1;
|
||||
for (size_t j = output_shape_.size() - 1; j > dim; --j) {
|
||||
elems_nums *= output_shape_[j];
|
||||
}
|
||||
size_t input_nums = 1;
|
||||
for (size_t j = 0; j < dim; ++j) {
|
||||
input_nums *= input_shape_[j];
|
||||
}
|
||||
|
||||
for (size_t j = 0; j < input_nums; ++j) {
|
||||
T *in_ptr = output_ptr_ + elems_nums * j;
|
||||
for (size_t i = 0; i < rate; ++i) {
|
||||
T *out_ptr = tmp_ptr_ + (j * rate + i) * elems_nums;
|
||||
memcpy_s(out_ptr, elems_nums * sizeof(T), in_ptr, elems_nums * sizeof(T));
|
||||
}
|
||||
}
|
||||
size_t elems = elems_nums * rate * input_nums;
|
||||
memcpy_s(output_ptr_, elems * sizeof(T), tmp_ptr_, elems * sizeof(T));
|
||||
for (size_t i = 0; i < output_shape_size; ++i) {
|
||||
shape_info_.output_shape_[i] = SizeToInt(output_shape_[i]);
|
||||
}
|
||||
shape_info_.input_shape_size_ = SizeToInt(input_shape_size);
|
||||
shape_info_.output_shape_size_ = SizeToInt(output_shape_size);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -96,25 +58,33 @@ bool BroadcastToCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, cons
|
|||
const std::vector<AddressPtr> &outputs) {
|
||||
if (inputs.size() != 1 || outputs.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Wrong number of inputs or outputs!";
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((inputs[0] == nullptr) || (inputs[0]->size == 0)) {
|
||||
MS_LOG(EXCEPTION) << "Input data is NULL!";
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((outputs[0] == nullptr) || (outputs[0]->size == 0)) {
|
||||
MS_LOG(EXCEPTION) << "Output data is NULL!";
|
||||
return false;
|
||||
}
|
||||
|
||||
input_ptr_ = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
output_ptr_ = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
const auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
int ret = NNACL_ERR;
|
||||
if constexpr (std::is_same_v<T, bool>) {
|
||||
ret = BroadcastTo(bool, input_addr, &shape_info_, output_addr);
|
||||
} else if constexpr (std::is_same_v<T, int>) {
|
||||
ret = BroadcastTo(int, input_addr, &shape_info_, output_addr);
|
||||
} else if constexpr (std::is_same_v<T, float>) {
|
||||
ret = BroadcastTo(float, input_addr, &shape_info_, output_addr);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Not supported data type for BroadcastTo.";
|
||||
}
|
||||
|
||||
BroadcastToImpl(0);
|
||||
|
||||
return true;
|
||||
if (ret == NNACL_OK) {
|
||||
return true;
|
||||
}
|
||||
MS_LOG(ERROR) << "Broadcast tensor with shape " << input_shape_ << " to shape " << output_shape_
|
||||
<< " execute failed.";
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
|
|
|
@ -21,44 +21,32 @@
|
|||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
class BroadcastToCPUKernel : public CPUKernel {
|
||||
public:
|
||||
BroadcastToCPUKernel() = default;
|
||||
~BroadcastToCPUKernel() override {
|
||||
if (tmp_ptr_ != nullptr) {
|
||||
free(tmp_ptr_);
|
||||
tmp_ptr_ = nullptr;
|
||||
}
|
||||
};
|
||||
~BroadcastToCPUKernel() = default;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
void BroadcastToImpl(size_t dim);
|
||||
|
||||
size_t Index(const size_t &index, const size_t &dim) { return dim == 1 ? 0 : index; }
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
size_t nums_{1};
|
||||
T *input_ptr_{nullptr};
|
||||
T *output_ptr_{nullptr};
|
||||
T *tmp_ptr_{nullptr};
|
||||
BroadcastShapeInfo shape_info_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastToCPUKernel<float>);
|
||||
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
BroadcastToCPUKernel<int>);
|
||||
MS_REG_CPU_KERNEL(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
BroadcastToCPUKernel<bool>);
|
||||
MS_REG_CPU_KERNEL_T(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastToCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
BroadcastToCPUKernel, int);
|
||||
MS_REG_CPU_KERNEL_T(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
BroadcastToCPUKernel, bool);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -18,28 +18,32 @@
|
|||
#include "backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h"
|
||||
#include "common/thread_pool.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "nnacl/fp32_grad/activation_grad.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel<T>::ReluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
if (input2[i] > 0) {
|
||||
out[i] = input1[i];
|
||||
} else {
|
||||
out[i] = 0;
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
int ret = ::ReluGrad(input1 + start, input2 + start, end - start, out + start);
|
||||
if (ret == NNACL_ERR) {
|
||||
MS_LOG(EXCEPTION) << "ReLUGrad failed.";
|
||||
}
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "ReLUGrad only support float";
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel<T>::ReLU6Grad(const T *input1, const T *input2, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
if (input2[i] > 0 && input2[i] <= 6) {
|
||||
out[i] = input1[i];
|
||||
} else {
|
||||
out[i] = 0;
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
int ret = ::Relu6Grad(input1 + start, input2 + start, end - start, out + start);
|
||||
if (ret == NNACL_ERR) {
|
||||
MS_LOG(EXCEPTION) << "ReLU6Grad failed.";
|
||||
}
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "ReLU6Grad only support float";
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -30,12 +30,9 @@ file(GLOB KERNEL_SRC
|
|||
${NNACL_DIR}/int8/*.c
|
||||
${NNACL_DIR}/infer/*.c
|
||||
${NNACL_DIR}/base/*.c
|
||||
${NNACL_DIR}/fp32_grad/*.c
|
||||
)
|
||||
|
||||
if(SUPPORT_TRAIN)
|
||||
file(GLOB TRAIN_SRC ${NNACL_DIR}/fp32_grad/*.c)
|
||||
endif()
|
||||
|
||||
if(PLATFORM_ARM64)
|
||||
file(GLOB ASSEMBLY_SRC ${NNACL_DIR}/assembly/arm64/*.S)
|
||||
set_property(SOURCE ${ASSEMBLY_SRC} PROPERTY LANGUAGE C)
|
||||
|
|
|
@ -0,0 +1,95 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
#include <string.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
size_t accumulate(const int *shape, int start, int end) {
|
||||
size_t product = 1;
|
||||
for (int i = start; i <= end; ++i) {
|
||||
product *= (size_t)shape[i];
|
||||
}
|
||||
return product;
|
||||
}
|
||||
|
||||
void pad_input_shape(int *input_shape, int input_shape_len, int output_shape_len) {
|
||||
if (input_shape_len < output_shape_len) {
|
||||
const int shape_gap = output_shape_len - input_shape_len;
|
||||
for (int i = input_shape_len - 1; i >= 0; --i) {
|
||||
input_shape[i + shape_gap] = input_shape[i];
|
||||
}
|
||||
for (int i = 0; i < shape_gap; ++i) {
|
||||
input_shape[i] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define BROADCAST_TO(type) \
|
||||
int broadcast_to_##type(const type *input, BroadcastShapeInfo *shape_info, type *output) { \
|
||||
if (shape_info->output_shape_size_ > MAX_SHAPE_SIZE) { \
|
||||
return NNACL_ERR; \
|
||||
} \
|
||||
int *input_shape = shape_info->input_shape_; \
|
||||
const int *output_shape = shape_info->output_shape_; \
|
||||
const int dim_max = shape_info->output_shape_size_ - 1; \
|
||||
const size_t bool_length = 1, number_length = 4; \
|
||||
const size_t data_length = strcmp(#type, "bool") ? number_length : bool_length; \
|
||||
const size_t temp_length = accumulate(output_shape, 0, dim_max); \
|
||||
type *data_temp = (type *)malloc(temp_length * data_length); \
|
||||
if (data_temp == NULL) { \
|
||||
return NNACL_ERR; \
|
||||
} \
|
||||
pad_input_shape(input_shape, shape_info->input_shape_size_, dim_max + 1); \
|
||||
shape_info->input_shape_size_ = dim_max + 1; \
|
||||
\
|
||||
size_t before_dim_elements_num = accumulate(input_shape, 0, dim_max - 1); \
|
||||
size_t after_dim_elements_num = input_shape[dim_max]; \
|
||||
size_t dim_broadcast_rate = (size_t)(output_shape[dim_max] / input_shape[dim_max]); \
|
||||
for (size_t i = 0; i < before_dim_elements_num; ++i) { \
|
||||
const type *in_ptr = input + i * after_dim_elements_num; \
|
||||
for (size_t j = 0; j < dim_broadcast_rate; ++j) { \
|
||||
type *out_ptr = output + (i * dim_broadcast_rate + j) * after_dim_elements_num; \
|
||||
memcpy(out_ptr, in_ptr, after_dim_elements_num *data_length); \
|
||||
} \
|
||||
} \
|
||||
\
|
||||
int dim_index = dim_max - 1; \
|
||||
while (dim_index >= 0) { \
|
||||
dim_broadcast_rate = (size_t)(output_shape[dim_index] / input_shape[dim_index]); \
|
||||
if (dim_broadcast_rate > 1) { \
|
||||
before_dim_elements_num = accumulate(input_shape, 0, dim_index - 1); \
|
||||
after_dim_elements_num = accumulate(output_shape, dim_index + 1, dim_max); \
|
||||
for (size_t i = 0; i < before_dim_elements_num; ++i) { \
|
||||
type *in_ptr = output + i * after_dim_elements_num; \
|
||||
for (size_t j = 0; j < dim_broadcast_rate; ++j) { \
|
||||
type *out_ptr = data_temp + (i * dim_broadcast_rate + j) * after_dim_elements_num; \
|
||||
memcpy(out_ptr, in_ptr, after_dim_elements_num *data_length); \
|
||||
} \
|
||||
} \
|
||||
size_t elements_total = before_dim_elements_num * dim_broadcast_rate * after_dim_elements_num; \
|
||||
memcpy(output, data_temp, elements_total *data_length); \
|
||||
} \
|
||||
--dim_index; \
|
||||
} \
|
||||
free(data_temp); \
|
||||
return NNACL_OK; \
|
||||
}
|
||||
|
||||
BROADCAST_TO(int)
|
||||
BROADCAST_TO(float)
|
||||
BROADCAST_TO(bool)
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -13,18 +13,20 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_NNACL_FP32_BROADCAST_TO_FP32_H_
|
||||
#define MINDSPORE_NNACL_FP32_BROADCAST_TO_FP32_H_
|
||||
#ifndef MINDSPORE_NNACL_FP32_BROADCAST_TO_H_
|
||||
#define MINDSPORE_NNACL_FP32_BROADCAST_TO_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/broadcast_to_parameter.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
int BroadcastTo(const float *input, BroadcastShapeInfo *shape_info, float *output);
|
||||
#define BroadcastTo(type, input, shape_info, output) broadcast_to_##type(input, shape_info, output)
|
||||
int broadcast_to_int(const int *input, BroadcastShapeInfo *shape_info, int *output);
|
||||
int broadcast_to_float(const float *input, BroadcastShapeInfo *shape_info, float *output);
|
||||
int broadcast_to_bool(const bool *input, BroadcastShapeInfo *shape_info, bool *output);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_NNACL_FP32_BROADCAST_TO_FP32_H_
|
||||
#endif // MINDSPORE_NNACL_FP32_BROADCAST_TO_H_
|
|
@ -20,14 +20,14 @@
|
|||
|
||||
typedef struct BroadcastToParameter {
|
||||
OpParameter op_parameter_;
|
||||
int shape_[COMM_SHAPE_SIZE];
|
||||
int shape_[MAX_SHAPE_SIZE];
|
||||
size_t shape_size_;
|
||||
} BroadcastToParameter;
|
||||
|
||||
typedef struct BroadcastShapeInfo {
|
||||
int input_shape_[COMM_SHAPE_SIZE];
|
||||
int input_shape_[MAX_SHAPE_SIZE];
|
||||
int input_shape_size_;
|
||||
int output_shape_[COMM_SHAPE_SIZE];
|
||||
int output_shape_[MAX_SHAPE_SIZE];
|
||||
int output_shape_size_;
|
||||
} BroadcastShapeInfo;
|
||||
|
||||
|
|
|
@ -1,103 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include <string.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
void PadBroadcastShapeInfo(BroadcastShapeInfo *shape_info) {
|
||||
if (shape_info->input_shape_size_ < DIMENSION_4D) {
|
||||
int input_shape_tmp[DIMENSION_4D];
|
||||
for (int i = 0; i < shape_info->input_shape_size_; ++i) {
|
||||
input_shape_tmp[i] = shape_info->input_shape_[i];
|
||||
}
|
||||
int input_shape_index = shape_info->input_shape_size_ - 1;
|
||||
for (int i = DIMENSION_4D - 1; i >= 0; --i) {
|
||||
if (input_shape_index >= 0) {
|
||||
shape_info->input_shape_[i] = input_shape_tmp[input_shape_index--];
|
||||
} else {
|
||||
shape_info->input_shape_[i] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (shape_info->output_shape_size_ < DIMENSION_4D) {
|
||||
int output_shape_tmp[DIMENSION_4D];
|
||||
for (int i = 0; i < shape_info->output_shape_size_; ++i) {
|
||||
output_shape_tmp[i] = shape_info->output_shape_[i];
|
||||
}
|
||||
int output_shape_index = shape_info->output_shape_size_ - 1;
|
||||
for (int i = DIMENSION_4D - 1; i >= 0; --i) {
|
||||
if (output_shape_index >= 0) {
|
||||
shape_info->output_shape_[i] = output_shape_tmp[output_shape_index--];
|
||||
} else {
|
||||
shape_info->output_shape_[i] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int BroadcastTo(const float *input, BroadcastShapeInfo *shape_info, float *output) {
|
||||
if (shape_info->input_shape_size_ > DIMENSION_4D || shape_info->output_shape_size_ > DIMENSION_4D) {
|
||||
return NNACL_ERR;
|
||||
}
|
||||
PadBroadcastShapeInfo(shape_info);
|
||||
size_t input_dim_offset[DIMENSION_4D - 1];
|
||||
input_dim_offset[2] = shape_info->input_shape_[3] * 4;
|
||||
input_dim_offset[1] = input_dim_offset[2] * shape_info->input_shape_[2];
|
||||
input_dim_offset[0] = input_dim_offset[1] * shape_info->input_shape_[1];
|
||||
size_t output_dim_offset[DIMENSION_4D - 1];
|
||||
output_dim_offset[2] = shape_info->output_shape_[3] * 4;
|
||||
output_dim_offset[1] = output_dim_offset[2] * shape_info->output_shape_[2];
|
||||
output_dim_offset[0] = output_dim_offset[1] * shape_info->output_shape_[1];
|
||||
uint8_t *in_base = (uint8_t *)input;
|
||||
uint8_t *out_base = (uint8_t *)(output);
|
||||
for (int32_t dim0 = 0; dim0 < shape_info->input_shape_[0]; ++dim0) {
|
||||
for (int32_t dim1 = 0; dim1 < shape_info->input_shape_[1]; ++dim1) {
|
||||
for (int32_t dim2 = 0; dim2 < shape_info->input_shape_[2]; ++dim2) {
|
||||
if (shape_info->input_shape_[3] == shape_info->output_shape_[3]) {
|
||||
memcpy(out_base + output_dim_offset[0] * dim0 + output_dim_offset[1] * dim1 + output_dim_offset[2] * dim2,
|
||||
in_base + input_dim_offset[0] * dim0 + input_dim_offset[1] * dim1 + input_dim_offset[2] * dim2,
|
||||
input_dim_offset[2]);
|
||||
} else {
|
||||
for (int32_t dim3 = 0; dim3 < shape_info->output_shape_[3]; ++dim3) {
|
||||
memcpy(out_base + output_dim_offset[0] * dim0 + output_dim_offset[1] * dim1 + output_dim_offset[2] * dim2 +
|
||||
dim3 * 4,
|
||||
in_base + input_dim_offset[0] * dim0 + input_dim_offset[1] * dim1 + input_dim_offset[2] * dim2, 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (shape_info->input_shape_[2] != shape_info->output_shape_[2]) {
|
||||
for (int32_t dim2 = 0; dim2 < shape_info->output_shape_[2]; ++dim2) {
|
||||
memcpy(out_base + output_dim_offset[0] * dim0 + output_dim_offset[1] * dim1 + dim2 * output_dim_offset[2],
|
||||
out_base + output_dim_offset[0] * dim0 + output_dim_offset[1] * dim1, output_dim_offset[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (shape_info->input_shape_[1] != shape_info->output_shape_[1]) {
|
||||
for (int32_t dim1 = 0; dim1 < shape_info->output_shape_[1]; ++dim1) {
|
||||
memcpy(out_base + output_dim_offset[0] * dim0 + output_dim_offset[1] * dim1,
|
||||
out_base + output_dim_offset[0] * dim0, output_dim_offset[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (shape_info->input_shape_[0] != shape_info->output_shape_[0]) {
|
||||
for (int32_t dim0 = 0; dim0 < shape_info->output_shape_[0]; ++dim0) {
|
||||
memcpy(out_base + output_dim_offset[0] * dim0, out_base, output_dim_offset[0]);
|
||||
}
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
|
@ -20,7 +20,7 @@
|
|||
#include "nnacl/fp32_grad/activation_grad.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
inline int ReluGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int ReluGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
int i = 0;
|
||||
#ifdef ENABLE_ARM
|
||||
float32x4_t zero_4 = vdupq_n_f32(0.0f);
|
||||
|
@ -38,7 +38,7 @@ inline int ReluGrad(float *src0, float *src1, size_t length, float *dst) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int Relu6Grad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int Relu6Grad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
int i = 0;
|
||||
#ifdef ENABLE_ARM
|
||||
float32x4_t zero_4 = vdupq_n_f32(0.0f);
|
||||
|
@ -59,28 +59,28 @@ int Relu6Grad(float *src0, float *src1, size_t length, float *dst) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int LReluGrad(float *src0, float *src1, size_t length, float *dst, float alpha) {
|
||||
int LReluGrad(const float *src0, const float *src1, size_t length, float *dst, float alpha) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
dst[i] = src1[i] > 0.0f ? src0[i] : alpha * src0[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int SigmoidGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int SigmoidGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
dst[i] = src0[i] * (src1[i] * (1.0f - src1[i]));
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int TanhGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int TanhGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
dst[i] = (1.0f - (src1[i] * src1[i])) * src0[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int HSwishGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int HSwishGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
float tmp = (src1[i] > 3.0f ? 1.0f : (src1[i] < -3.0f ? 0.0f : (2.0f * src1[i] + 3.0f) / 6.0f));
|
||||
dst[i] = tmp * src0[i];
|
||||
|
@ -88,7 +88,7 @@ int HSwishGrad(float *src0, float *src1, size_t length, float *dst) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int HSigmoidGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int HSigmoidGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
float tmp = (src1[i] > 3.0f ? 0.0f : (src1[i] < -3.0f ? 0.0f : 1.0f / 6.0f));
|
||||
dst[i] = tmp * src0[i];
|
||||
|
@ -96,14 +96,14 @@ int HSigmoidGrad(float *src0, float *src1, size_t length, float *dst) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int EluGrad(float *src0, float *src1, size_t length, float *dst, float alpha) {
|
||||
int EluGrad(const float *src0, const float *src1, size_t length, float *dst, float alpha) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
dst[i] = (src1[i] > 0.0f ? src0[i] : alpha * expm1(src1[i]) * src0[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int GeluGrad(float *src0, float *src1, size_t length, float *dst) {
|
||||
int GeluGrad(const float *src0, const float *src1, size_t length, float *dst) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
dst[i] = src0[i] * ((0.5 * (1.0 + erf(src1[i] / 1.4142135623730951))) +
|
||||
(src1[i] * exp(-0.5 * src1[i] * src1[i]) / 2.5066282746));
|
||||
|
|
|
@ -30,15 +30,15 @@ typedef struct ActivationGradParameter {
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
int ReluGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int Relu6Grad(float *src0, float *src1, size_t length, float *dst);
|
||||
int LReluGrad(float *src0, float *src1, size_t length, float *dst, float alpha);
|
||||
int SigmoidGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int TanhGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int HSwishGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int HSigmoidGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int EluGrad(float *src0, float *src1, size_t length, float *dst, float alpha);
|
||||
int GeluGrad(float *src0, float *src1, size_t length, float *dst);
|
||||
int ReluGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int Relu6Grad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int LReluGrad(const float *src0, const float *src1, size_t length, float *dst, float alpha);
|
||||
int SigmoidGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int TanhGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int HSwishGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int HSigmoidGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
int EluGrad(const float *src0, const float *src1, size_t length, float *dst, float alpha);
|
||||
int GeluGrad(const float *src0, const float *src1, size_t length, float *dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#define MINDSPORE_NNACL_BROADCAST_TO_INFER_H
|
||||
|
||||
#include "nnacl/infer/common_infer.h"
|
||||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
|
|
@ -57,7 +57,7 @@ else()
|
|||
endif()
|
||||
|
||||
if(ENABLE_CPU)
|
||||
target_link_libraries(mindspore_shared_lib PRIVATE mindspore::dnnl mindspore::mkldnn)
|
||||
target_link_libraries(mindspore_shared_lib PRIVATE mindspore::dnnl mindspore::mkldnn nnacl)
|
||||
endif()
|
||||
|
||||
if(USE_GLOG)
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include "src/ops/populate/populate_register.h"
|
||||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
using mindspore::schema::PrimitiveType_BroadcastTo;
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
#include "schema/model_v0_generated.h"
|
||||
#include "src/ops/populate/populate_register.h"
|
||||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
|
|
|
@ -49,10 +49,10 @@ int BroadcastToCPUKernel::Init() {
|
|||
}
|
||||
|
||||
int BroadcastToCPUKernel::Run() {
|
||||
auto input_data = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
|
||||
const auto input_data = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
|
||||
auto output_data = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
|
||||
return BroadcastTo(input_data, &shape_info_, output_data);
|
||||
return BroadcastTo(float, input_data, &shape_info_, output_data);
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_BroadcastTo, LiteKernelCreator<BroadcastToCPUKernel>)
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
|
||||
#include "nnacl/fp32/broadcast_to_fp32.h"
|
||||
#include "nnacl/base/broadcast_to.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class BroadcastToCPUKernel : public LiteKernel {
|
||||
|
|
|
@ -45,8 +45,8 @@ int ActivationGradCPUKernel::Init() {
|
|||
int ActivationGradCPUKernel::ReSize() { return RET_OK; }
|
||||
|
||||
int ActivationGradCPUKernel::DoActivation(int task_id) {
|
||||
auto yt_addr = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
|
||||
auto input_addr = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData());
|
||||
const auto yt_addr = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
|
||||
const auto input_addr = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData());
|
||||
auto output_addr = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
int length = in_tensors_.at(0)->ElementsNum();
|
||||
|
||||
|
|
|
@ -33,6 +33,24 @@ def test_broadcast():
|
|||
expect = np.broadcast_to(x_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
shape = (3, 5, 7, 4, 5, 6)
|
||||
x_np = np.arange(20).reshape((4, 5, 1)).astype(np.int32)
|
||||
output = P.BroadcastTo(shape)(Tensor(x_np))
|
||||
expect = np.broadcast_to(x_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
shape = (8, 5, 7, 4, 5, 6)
|
||||
x_np = np.arange(24).reshape((1, 4, 1, 6)).astype(np.bool) + 0.2
|
||||
output = P.BroadcastTo(shape)(Tensor(x_np))
|
||||
expect = np.broadcast_to(x_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
shape = (4, 5, 2, 3, 4, 5, 6)
|
||||
x_np = np.random.rand(2, 3, 1, 5, 1).astype(np.float32)
|
||||
output = P.BroadcastTo(shape)(Tensor(x_np))
|
||||
expect = np.broadcast_to(x_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
shape = (3, 4, 5, 6)
|
||||
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
output = P.BroadcastTo(shape)(Tensor(x_np))
|
||||
|
@ -50,6 +68,12 @@ def test_broadcast():
|
|||
expect = np.broadcast_to(x1_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
shape = (4, 5)
|
||||
x1_np = np.ones((1,)).astype(np.bool_)
|
||||
output = P.BroadcastTo(shape)(Tensor(x1_np))
|
||||
expect = np.broadcast_to(x1_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class NetReluGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetReluGrad, self).__init__()
|
||||
self.relu6_grad = G.ReLU6Grad()
|
||||
self.x = Parameter(initializer(Tensor(np.array([[[[1, 0, 6],
|
||||
[-2, 3, 6],
|
||||
[-3, 1, 8]]]]).astype(np.float32)), [1, 1, 3, 3]), name='x')
|
||||
self.dy = Parameter(initializer(Tensor(np.array([[[[1, 2, 3],
|
||||
[4, 5, 6],
|
||||
[7, 8, 9]]]]).astype(np.float32)), [1, 1, 3, 3]), name='dy')
|
||||
|
||||
def construct(self):
|
||||
return self.relu6_grad(self.dy, self.x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_relu_grad():
|
||||
relu_grad = NetReluGrad()
|
||||
output = relu_grad()
|
||||
expect = np.array([[[[1, 0, 3], [0, 5, 6], [0, 8, 0]]]]).astype(np.float32)
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
diff = np.abs(output.asnumpy() - expect)
|
||||
assert np.all(diff < error)
|
|
@ -29,7 +29,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|||
class NetReluGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetReluGrad, self).__init__()
|
||||
self.rekuGrad = G.ReluGrad()
|
||||
self.relu_grad = G.ReluGrad()
|
||||
self.x = Parameter(initializer(Tensor(np.array([[[[-1, 1, 1],
|
||||
[1, -1, 1],
|
||||
[1, 1, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='x')
|
||||
|
@ -38,7 +38,7 @@ class NetReluGrad(nn.Cell):
|
|||
[1, 1, 1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='dy')
|
||||
|
||||
def construct(self):
|
||||
return self.rekuGrad(self.dy, self.x)
|
||||
return self.relu_grad(self.dy, self.x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -47,7 +47,7 @@ class NetReluGrad(nn.Cell):
|
|||
def test_relu_grad():
|
||||
relu_grad = NetReluGrad()
|
||||
output = relu_grad()
|
||||
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.float32)
|
||||
expect = np.array([[[[0, 0, 1], [0, 0, 0], [1, 1, 0]]]]).astype(np.float32)
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
diff = np.abs(output.asnumpy() - expect)
|
||||
assert np.all(diff < error)
|
||||
|
|
Loading…
Reference in New Issue