forked from mindspore-Ecosystem/mindspore
!35945 runtime performance optimize-enable record actor on demand
Merge pull request !35945 from limingqi107/new_actor_runtime
This commit is contained in:
commit
9cde9cb666
|
@ -296,7 +296,9 @@ void GraphScheduler::Clear(const ActorInfo &actor_info, const std::vector<Kernel
|
|||
for (auto &base_actor : base_actors) {
|
||||
MS_EXCEPTION_IF_NULL(base_actor);
|
||||
EraseActor(base_actor->GetAID().Name());
|
||||
actor_manager->Terminate(base_actor->GetAID());
|
||||
if (base_actor->parent_fusion_actor_ == nullptr) {
|
||||
actor_manager->Terminate(base_actor->GetAID());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -431,11 +433,24 @@ void GraphScheduler::BuildAndScheduleGlobalActor() {
|
|||
(void)actor_manager->Spawn(base_actor, false);
|
||||
|
||||
// Create and schedule recorder actor.
|
||||
auto recorder_actor = std::make_shared<RecorderActor>();
|
||||
MS_EXCEPTION_IF_NULL(recorder_actor);
|
||||
recorder_aid_ = &(recorder_actor->GetAID());
|
||||
auto base_recorder_actor = static_cast<ActorReference>(recorder_actor);
|
||||
(void)actor_manager->Spawn(base_recorder_actor, true);
|
||||
bool recorder_actor_need = false;
|
||||
#ifndef ENABLE_SECURITY
|
||||
if (profiler::ProfilerManager::GetInstance()->GetProfilingEnableFlag()) {
|
||||
recorder_actor_need = true;
|
||||
}
|
||||
#endif
|
||||
#ifdef ENABLE_DUMP_IR
|
||||
if (mindspore::RecorderManager::Instance().RdrEnable()) {
|
||||
recorder_actor_need = true;
|
||||
}
|
||||
#endif
|
||||
if (recorder_actor_need) {
|
||||
auto recorder_actor = std::make_shared<RecorderActor>();
|
||||
MS_EXCEPTION_IF_NULL(recorder_actor);
|
||||
recorder_aid_ = &(recorder_actor->GetAID());
|
||||
auto base_recorder_actor = static_cast<ActorReference>(recorder_actor);
|
||||
(void)actor_manager->Spawn(base_recorder_actor, true);
|
||||
}
|
||||
|
||||
// Create and schedule debug actor.
|
||||
// debugger_actor_need is true for CPU when e2e dump is enabled and for Ascend and GPU is true when debugger or dump
|
||||
|
@ -548,6 +563,22 @@ void GraphScheduler::Run(ActorSet *const actor_set, const std::vector<DeviceCont
|
|||
SignalGuard sg(IntHandler);
|
||||
#endif
|
||||
|
||||
// Create recorder actor in the running to support the profiler in callback scene.
|
||||
#ifndef ENABLE_SECURITY
|
||||
if (profiler::ProfilerManager::GetInstance()->GetProfilingEnableFlag() && (recorder_aid_ == nullptr)) {
|
||||
auto recorder_actor = std::make_shared<RecorderActor>();
|
||||
MS_EXCEPTION_IF_NULL(recorder_actor);
|
||||
recorder_aid_ = &(recorder_actor->GetAID());
|
||||
auto base_recorder_actor = static_cast<ActorReference>(recorder_actor);
|
||||
auto actor_manager = ActorMgr::GetActorMgrRef();
|
||||
MS_EXCEPTION_IF_NULL(actor_manager);
|
||||
(void)actor_manager->Spawn(base_recorder_actor, true);
|
||||
if (actor_set->loop_count_actor_ != nullptr) {
|
||||
actor_set->loop_count_actor_->recorder_aid_ = recorder_aid_;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Construct OpContext.
|
||||
OpContext<DeviceTensor> op_context;
|
||||
std::vector<Promise<int>> result(1);
|
||||
|
|
|
@ -1,50 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore
|
||||
from mindspore import context, ops, nn, Tensor
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = ops.ReLU()
|
||||
self.add = ops.Add()
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.relu(input_x)
|
||||
for _ in range(200):
|
||||
output = self.add(output, 1)
|
||||
return output
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_multi_actor_fusion():
|
||||
"""
|
||||
Feature: Multi actor fusion.
|
||||
Description: Test the net which is non concurrent, that can trigger the function of multi actor fusion.
|
||||
Expectation: The value and shape of output are the expected values.
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
x = Tensor(np.ones(2), mindspore.float32)
|
||||
net = Net()
|
||||
expect = np.array([201, 201])
|
||||
for _ in range(20):
|
||||
output = net(x)
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in New Issue