add scatterupdate op

This commit is contained in:
yangzhenzhang 2021-02-24 19:30:57 +08:00
parent cd746e8d52
commit 9cdd70433f
8 changed files with 324 additions and 1 deletions

View File

@ -185,6 +185,7 @@ using ZerosLikeCost = CastCost;
using OnesLikeCost = CastCost;
using RangeCost = CastCost;
using SplitCost = CastCost;
using ScatterUpdateCost = CastCost;
class SqrtCost : public CastCost {
public:

View File

@ -193,6 +193,7 @@ REGISTER(SplitInfo);
REGISTER(UniqueInfo);
REGISTER(GatherNdInfo);
REGISTER(TopKInfo);
REGISTER(ScatterUpdateInfo);
} // namespace parallel
} // namespace mindspore

View File

@ -52,5 +52,6 @@
#include "frontend/parallel/ops_info/reluv2_info.h"
#include "frontend/parallel/ops_info/gathernd_info.h"
#include "frontend/parallel/ops_info/topk_info.h"
#include "frontend/parallel/ops_info/scatter_update_info.h"
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

View File

@ -326,6 +326,7 @@ constexpr char DROPOUT[] = "Dropout";
constexpr char KStridedSlice[] = "StridedSlice";
constexpr char UNIQUE[] = "Unique";
constexpr char GATHERND[] = "GatherNd";
constexpr char SCATTER_UPDATE[] = "ScatterUpdate";
// Parallel don't care
constexpr char STRING_EQUAL[] = "string_equal";

View File

@ -0,0 +1,210 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/scatter_update_info.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <utility>
#include <vector>
#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
#include "pipeline/jit/resource.h"
namespace mindspore {
namespace parallel {
// The indices can not be split.
// The strategy of input and the strategy of updates must be equal.
// The first dimension of input or updates can not be split.
Status ScatterUpdateInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}
std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.size() != 3) {
MS_LOG(ERROR) << name_ << ": The size of strategy must be 3";
return FAILED;
}
if (stra[0] != stra[2]) {
MS_LOG(ERROR) << name_ << ": The strategy[0] and strategy[2] must be equal";
return FAILED;
}
if (stra[0].empty()) {
MS_LOG(ERROR) << name_ << ": The strategy[0] is empty";
return FAILED;
}
if (stra[0][0] != 1) {
MS_LOG(ERROR) << name_ << ": The first dimension of input can not be split";
return FAILED;
}
if (!stra[1].empty() && std::accumulate(stra[1].begin(), stra[1].end(), 1, std::multiplies<int64_t>()) != 1) {
MS_LOG(ERROR) << name_ << ": The indices can not be split";
return FAILED;
}
return SUCCESS;
}
Status ScatterUpdateInfo::InferDevMatrixShape() {
MS_EXCEPTION_IF_NULL(strategy_);
std::vector<Dimensions> stra = strategy_->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << "The strategy is empty";
return FAILED;
}
dev_matrix_shape_ = stra[0];
return SUCCESS;
}
Status ScatterUpdateInfo::InferTensorMap() {
TensorMap input_tensor_map;
TensorMap indices_tensor_map(inputs_shape_[1].size(), MAP_NONE);
if (inputs_shape_.size() != 3) {
MS_LOG(ERROR) << name_ << "The size of inputs shape must be 3";
return FAILED;
}
// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
int64_t size = SizeToLong(inputs_shape_[0].size());
for (int64_t i = 0; i < size; ++i) {
input_tensor_map.push_back(size - i - 1);
}
inputs_tensor_map_.push_back(input_tensor_map); // input
inputs_tensor_map_.push_back(indices_tensor_map); // indices
inputs_tensor_map_.push_back(input_tensor_map); // updates
outputs_tensor_map_.push_back(input_tensor_map);
return SUCCESS;
}
Status ScatterUpdateInfo::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}
TensorLayout input_layout, output_layout;
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
// infer tensor layout
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
inputs_tensor_info_.push_back(input_tensor_info);
}
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_layout);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}
void ScatterUpdateInfo::ReComputeBatchSplitFlagList() {
for (size_t i = 0; i < inputs_shape_.size(); i++) {
split_flag_list_[i] = false; // the first dimension can not be split
}
}
Status ScatterUpdateInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
return SetCostUnderStrategyBase(strategy);
}
Status ScatterUpdateInfo::GenerateStrategies(int64_t stage_id) {
if (InferAttrs() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
return FAILED;
}
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
// to generate the first input's strategy
Shape input_split(inputs_shape_[0].size(), 1);
input_split[0] = 0;
Shapes splittable_input = {input_split};
Shapes tmp_inputs_shape = {inputs_shape_[0]};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
return FAILED;
}
// the others strategies are equal to the first input's strategy
for (auto &sp : sp_vector) {
if ((sp == nullptr) || sp->GetInputDim().empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is null or empty";
return FAILED;
}
Strategys tmp_strategy;
Dimensions first_input_strategy = sp->GetInputDim()[0];
Dimensions indices_strategy(inputs_shape_[1].size(), 1);
tmp_strategy.push_back(first_input_strategy); // input
tmp_strategy.push_back(indices_strategy); // indices
tmp_strategy.push_back(first_input_strategy); // updates
sp->ResetInputs(tmp_strategy);
}
size_t success = 0;
for (auto &sp : sp_vector) {
PrintStrategy(sp);
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
PrintStrategy(sp);
}
}
return SUCCESS;
}
Status ScatterUpdateInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}
Status ScatterUpdateInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,59 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_
#include <string>
#include <memory>
#include <unordered_map>
#include <vector>
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
class ScatterUpdateInfo : public OperatorInfo {
public:
ScatterUpdateInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ScatterUpdateCost>()) {}
~ScatterUpdateInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int64_t) override;
Status SetCostUnderStrategy(const StrategyPtr &) override;
void ReComputeBatchSplitFlagList() override;
protected:
Status GetAttrs() override { return SUCCESS; }
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferMirrorOps() override { return SUCCESS; }
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
};
using ScatterUpdateInfoPtr = std::shared_ptr<ScatterUpdateInfo>;
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_

View File

@ -163,7 +163,7 @@ bool IsSplittableOperator(const std::string &op_name) {
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE,
UNSORTED_SEGMENT_MAX, GATHER_ND, TOPK};
UNSORTED_SEGMENT_MAX, GATHER_ND, TOPK, SCATTER_UPDATE};
// clang-format on
auto iter = splittable_op.find(op_name);

View File

@ -0,0 +1,50 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test scatter update """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Model, Parameter
from mindspore.ops import operations as P
from mindspore import context
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.inputs = Parameter(Tensor(np.ones([32, 128]).astype(np.float32)), "input")
self.indices = Tensor(np.ones([4]).astype(np.int32))
self.updates = Tensor(np.ones([4, 128]).astype(np.float32))
self.scatter_update = P.ScatterUpdate().shard(((1, 8), (1,), (1, 8)))
self.add = P.TensorAdd().shard(((8, 1), (8, 1)))
self.relu = P.ReLU()
def construct(self, x):
out = self.scatter_update(self.inputs, self.indices, self.updates)
out = self.add(x, out)
out = self.relu(out)
return out
def test_distribute_predict():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
net = Net()
model = Model(net)
predict_map = model.infer_predict_layout(inputs)
output = model.predict(inputs)
context.reset_auto_parallel_context()
return predict_map, output