forked from mindspore-Ecosystem/mindspore
add scatterupdate op
This commit is contained in:
parent
cd746e8d52
commit
9cdd70433f
|
@ -185,6 +185,7 @@ using ZerosLikeCost = CastCost;
|
|||
using OnesLikeCost = CastCost;
|
||||
using RangeCost = CastCost;
|
||||
using SplitCost = CastCost;
|
||||
using ScatterUpdateCost = CastCost;
|
||||
|
||||
class SqrtCost : public CastCost {
|
||||
public:
|
||||
|
|
|
@ -193,6 +193,7 @@ REGISTER(SplitInfo);
|
|||
REGISTER(UniqueInfo);
|
||||
REGISTER(GatherNdInfo);
|
||||
REGISTER(TopKInfo);
|
||||
REGISTER(ScatterUpdateInfo);
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -52,5 +52,6 @@
|
|||
#include "frontend/parallel/ops_info/reluv2_info.h"
|
||||
#include "frontend/parallel/ops_info/gathernd_info.h"
|
||||
#include "frontend/parallel/ops_info/topk_info.h"
|
||||
#include "frontend/parallel/ops_info/scatter_update_info.h"
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_
|
||||
|
|
|
@ -326,6 +326,7 @@ constexpr char DROPOUT[] = "Dropout";
|
|||
constexpr char KStridedSlice[] = "StridedSlice";
|
||||
constexpr char UNIQUE[] = "Unique";
|
||||
constexpr char GATHERND[] = "GatherNd";
|
||||
constexpr char SCATTER_UPDATE[] = "ScatterUpdate";
|
||||
|
||||
// Parallel don't care
|
||||
constexpr char STRING_EQUAL[] = "string_equal";
|
||||
|
|
|
@ -0,0 +1,210 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/scatter_update_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
#include "pipeline/jit/resource.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
// The indices can not be split.
|
||||
// The strategy of input and the strategy of updates must be equal.
|
||||
// The first dimension of input or updates can not be split.
|
||||
Status ScatterUpdateInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
MS_EXCEPTION_IF_NULL(strategy);
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
std::vector<Dimensions> stra = strategy->GetInputDim();
|
||||
if (stra.size() != 3) {
|
||||
MS_LOG(ERROR) << name_ << ": The size of strategy must be 3";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (stra[0] != stra[2]) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy[0] and strategy[2] must be equal";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (stra[0].empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy[0] is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (stra[0][0] != 1) {
|
||||
MS_LOG(ERROR) << name_ << ": The first dimension of input can not be split";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (!stra[1].empty() && std::accumulate(stra[1].begin(), stra[1].end(), 1, std::multiplies<int64_t>()) != 1) {
|
||||
MS_LOG(ERROR) << name_ << ": The indices can not be split";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::InferDevMatrixShape() {
|
||||
MS_EXCEPTION_IF_NULL(strategy_);
|
||||
std::vector<Dimensions> stra = strategy_->GetInputDim();
|
||||
if (stra.empty()) {
|
||||
MS_LOG(ERROR) << name_ << "The strategy is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
dev_matrix_shape_ = stra[0];
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::InferTensorMap() {
|
||||
TensorMap input_tensor_map;
|
||||
TensorMap indices_tensor_map(inputs_shape_[1].size(), MAP_NONE);
|
||||
if (inputs_shape_.size() != 3) {
|
||||
MS_LOG(ERROR) << name_ << "The size of inputs shape must be 3";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// cannot use dev_matrix_shape_ replace inputs_shape_[0], because it may not be fully split in all devices.
|
||||
int64_t size = SizeToLong(inputs_shape_[0].size());
|
||||
for (int64_t i = 0; i < size; ++i) {
|
||||
input_tensor_map.push_back(size - i - 1);
|
||||
}
|
||||
|
||||
inputs_tensor_map_.push_back(input_tensor_map); // input
|
||||
inputs_tensor_map_.push_back(indices_tensor_map); // indices
|
||||
inputs_tensor_map_.push_back(input_tensor_map); // updates
|
||||
|
||||
outputs_tensor_map_.push_back(input_tensor_map);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorLayout input_layout, output_layout;
|
||||
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
|
||||
// infer tensor layout
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
}
|
||||
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
void ScatterUpdateInfo::ReComputeBatchSplitFlagList() {
|
||||
for (size_t i = 0; i < inputs_shape_.size(); i++) {
|
||||
split_flag_list_[i] = false; // the first dimension can not be split
|
||||
}
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
|
||||
return SetCostUnderStrategyBase(strategy);
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::GenerateStrategies(int64_t stage_id) {
|
||||
if (InferAttrs() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer attrs failed";
|
||||
return FAILED;
|
||||
}
|
||||
if (inputs_shape_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// to generate the first input's strategy
|
||||
Shape input_split(inputs_shape_[0].size(), 1);
|
||||
input_split[0] = 0;
|
||||
Shapes splittable_input = {input_split};
|
||||
Shapes tmp_inputs_shape = {inputs_shape_[0]};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
// the others strategies are equal to the first input's strategy
|
||||
for (auto &sp : sp_vector) {
|
||||
if ((sp == nullptr) || sp->GetInputDim().empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": The strategy is null or empty";
|
||||
return FAILED;
|
||||
}
|
||||
Strategys tmp_strategy;
|
||||
Dimensions first_input_strategy = sp->GetInputDim()[0];
|
||||
Dimensions indices_strategy(inputs_shape_[1].size(), 1);
|
||||
tmp_strategy.push_back(first_input_strategy); // input
|
||||
tmp_strategy.push_back(indices_strategy); // indices
|
||||
tmp_strategy.push_back(first_input_strategy); // updates
|
||||
|
||||
sp->ResetInputs(tmp_strategy);
|
||||
}
|
||||
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
PrintStrategy(sp);
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init failed.";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << ": Init success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status ScatterUpdateInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
class ScatterUpdateInfo : public OperatorInfo {
|
||||
public:
|
||||
ScatterUpdateInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ScatterUpdateCost>()) {}
|
||||
~ScatterUpdateInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int64_t) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &) override;
|
||||
void ReComputeBatchSplitFlagList() override;
|
||||
|
||||
protected:
|
||||
Status GetAttrs() override { return SUCCESS; }
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override { return SUCCESS; }
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
};
|
||||
|
||||
using ScatterUpdateInfoPtr = std::shared_ptr<ScatterUpdateInfo>;
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SCATTER_UPDATE_INFO_H_
|
|
@ -163,7 +163,7 @@ bool IsSplittableOperator(const std::string &op_name) {
|
|||
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
|
||||
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
|
||||
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE, UNIFORM_CANDIDATE_SAMPLER, SLICE,
|
||||
UNSORTED_SEGMENT_MAX, GATHER_ND, TOPK};
|
||||
UNSORTED_SEGMENT_MAX, GATHER_ND, TOPK, SCATTER_UPDATE};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test scatter update """
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Model, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.inputs = Parameter(Tensor(np.ones([32, 128]).astype(np.float32)), "input")
|
||||
self.indices = Tensor(np.ones([4]).astype(np.int32))
|
||||
self.updates = Tensor(np.ones([4, 128]).astype(np.float32))
|
||||
self.scatter_update = P.ScatterUpdate().shard(((1, 8), (1,), (1, 8)))
|
||||
self.add = P.TensorAdd().shard(((8, 1), (8, 1)))
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
out = self.scatter_update(self.inputs, self.indices, self.updates)
|
||||
out = self.add(x, out)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
def test_distribute_predict():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
|
||||
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
|
||||
net = Net()
|
||||
model = Model(net)
|
||||
predict_map = model.infer_predict_layout(inputs)
|
||||
output = model.predict(inputs)
|
||||
context.reset_auto_parallel_context()
|
||||
return predict_map, output
|
Loading…
Reference in New Issue