forked from mindspore-Ecosystem/mindspore
将mindspore.ops.linspace中的stop参数修改为end, 将num参数修改为steps。修改英文接口文档及实现; 恢复mindspore.numpy.linspace的原参数名
This commit is contained in:
parent
94ad76bc14
commit
9b2e8af345
|
@ -670,31 +670,31 @@ def _compute_shapes(start, axis, num, endpoint):
|
|||
return bounds_shape, iota_shape, div
|
||||
|
||||
|
||||
def linspace(start, end, steps=50, endpoint=True, retstep=False, dtype=None, axis=0):
|
||||
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0):
|
||||
"""
|
||||
Returns evenly spaced values within a given interval.
|
||||
|
||||
Args:
|
||||
start (Union[int, list(int), tuple(int), tensor]): The starting value of the sequence.
|
||||
end (Union[int, list(int), tuple(int), tensor]): The end value of the sequence,
|
||||
stop (Union[int, list(int), tuple(int), tensor]): The end value of the sequence,
|
||||
unless `endpoint` is set to False. In that case, the sequence consists
|
||||
of all but the last of `steps + 1` evenly spaced samples, so that `end`
|
||||
of all but the last of `num + 1` evenly spaced samples, so that `stop`
|
||||
is excluded. Note that the step size changes when `endpoint` is False.
|
||||
steps (int, optional): Number of samples to generate. Default is 50.
|
||||
endpoint (bool, optional): If True, `end` is the last sample. Otherwise, it is
|
||||
num (int, optional): Number of samples to generate. Default is 50.
|
||||
endpoint (bool, optional): If True, `stop` is the last sample. Otherwise, it is
|
||||
not included. Default is True.
|
||||
retstep (bool, optional): If True, return (`samples`, `step`), where `step` is
|
||||
the spacing between samples.
|
||||
dtype (Union[:class:`mindspore.dtype`, str], optional): Designated tensor dtype,
|
||||
If `dtype` is None, infer the data type from other input arguments. Default is None.
|
||||
axis (int, optional): The axis in the result to store the samples. Relevant
|
||||
only if start or end are array-like. By default, the samples will
|
||||
only if start or stop are array-like. By default, the samples will
|
||||
be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
|
||||
Default is 0.
|
||||
|
||||
Returns:
|
||||
Tensor, with `steps` equally spaced samples in the closed interval
|
||||
:math:`[start, end]` or the half-open interval :math:`[start, end)`
|
||||
Tensor, with `num` equally spaced samples in the closed interval
|
||||
:math:`[start, stop]` or the half-open interval :math:`[start, stop)`
|
||||
(depending on whether `endpoint` is True or False).
|
||||
|
||||
Step, the size of spacing between samples, only returned if `retstep` is True.
|
||||
|
@ -711,18 +711,18 @@ def linspace(start, end, steps=50, endpoint=True, retstep=False, dtype=None, axi
|
|||
[0. 1. 2. 3. 4. 5.]
|
||||
"""
|
||||
# This implementation was inspired by jax.numpy.linspace and numpy.linspace
|
||||
start, end, steps, endpoint, dtype = _type_checking_for_xspace(start, end, steps, endpoint, dtype)
|
||||
start, stop, num, endpoint, dtype = _type_checking_for_xspace(start, stop, num, endpoint, dtype)
|
||||
axis = _canonicalize_axis(axis, start.ndim + 1)
|
||||
if not isinstance(retstep, bool):
|
||||
_raise_type_error("retstep should be an boolean, but got ", retstep)
|
||||
bounds_shape, iota_shape, div = _compute_shapes(start, axis, steps, endpoint)
|
||||
bounds_shape, iota_shape, div = _compute_shapes(start, axis, num, endpoint)
|
||||
out = None
|
||||
delta = None
|
||||
if steps > 1:
|
||||
delta = (end - start) / div
|
||||
if num > 1:
|
||||
delta = (stop - start) / div
|
||||
# This is similar to how numpy and jax compute linspace
|
||||
start_expand = reshape(start, bounds_shape)
|
||||
incremental_expand = reshape(_iota(mstype.float32, steps), iota_shape)
|
||||
incremental_expand = reshape(_iota(mstype.float32, num), iota_shape)
|
||||
delta_expand = reshape(delta, bounds_shape)
|
||||
start_expand, incremental_expand, delta_expand = broadcast_arrays(
|
||||
start_expand, incremental_expand, delta_expand)
|
||||
|
@ -730,13 +730,13 @@ def linspace(start, end, steps=50, endpoint=True, retstep=False, dtype=None, axi
|
|||
# recover endpoint
|
||||
if endpoint:
|
||||
out = moveaxis(out, axis, 0)
|
||||
out[-1] = end
|
||||
out[-1] = stop
|
||||
out = moveaxis(out, 0, axis)
|
||||
elif steps == 1:
|
||||
delta = nan if endpoint else end - start
|
||||
elif num == 1:
|
||||
delta = nan if endpoint else stop - start
|
||||
out = reshape(start, bounds_shape)
|
||||
else: # steps == 0
|
||||
_raise_value_error("cannot support Tensor with steps=0.")
|
||||
else: # num == 0
|
||||
_raise_value_error("cannot support Tensor with num=0.")
|
||||
if retstep:
|
||||
return out.astype(dtype), delta
|
||||
return out.astype(dtype)
|
||||
|
@ -2440,10 +2440,10 @@ def _pad_linear(arr, pad_width, end_values):
|
|||
pad_before = ()
|
||||
pad_after = ()
|
||||
if pad_width[i][0] > 0:
|
||||
pad_before = (linspace(end_values[i][0], left_value, steps=pad_width[i][0],
|
||||
pad_before = (linspace(end_values[i][0], left_value, num=pad_width[i][0],
|
||||
endpoint=False, dtype=dtype, axis=i).squeeze(i + 1),)
|
||||
if pad_width[i][1] > 0:
|
||||
pad_after = linspace(right_value, end_values[i][1], steps=pad_width[i][1] + 1,
|
||||
pad_after = linspace(right_value, end_values[i][1], num=pad_width[i][1] + 1,
|
||||
endpoint=True, dtype=dtype, axis=i).squeeze(i + 1)
|
||||
pad_after = (_slice_along_axis(pad_after, i, 1, pad_width[i][1] + 1),)
|
||||
tensor_with_pad = pad_before + (arr,) + pad_after
|
||||
|
|
|
@ -3184,51 +3184,51 @@ def bessel_y1(x):
|
|||
return bessel_y1_(x)
|
||||
|
||||
|
||||
def linspace(start, stop, num):
|
||||
def linspace(start, end, steps):
|
||||
r"""
|
||||
Returns a Tensor whose value is `num` evenly spaced in the interval `start` and `stop` (including `start` and
|
||||
`stop`), and the length of the output Tensor is `num`.
|
||||
Returns a Tensor whose value is `steps` evenly spaced in the interval `start` and `end` (including `start` and
|
||||
`end`), and the length of the output Tensor is `steps`.
|
||||
|
||||
.. math::
|
||||
\begin{aligned}
|
||||
&step = (stop - start)/(num - 1)\\
|
||||
&output = [start, start+step, start+2*step, ... , stop]
|
||||
&step = (end - start)/(steps - 1)\\
|
||||
&output = [start, start+step, start+2*step, ... , end]
|
||||
\end{aligned}
|
||||
|
||||
Args:
|
||||
start (Union[Tensor, int, float]): Start value of interval. The tensor data type must be float32 or float64
|
||||
and with shape of 0-D.
|
||||
stop (Union[Tensor, int, float]): Last value of interval. The tensor data type must be float32 or float64
|
||||
end (Union[Tensor, int, float]): Last value of interval. The tensor data type must be float32 or float64
|
||||
and with shape of 0-D.
|
||||
num (Union[Tensor, int]): Number of ticks in the interval, inclusive of start and stop.
|
||||
steps (Union[Tensor, int]): Number of ticks in the interval, inclusive of start and end.
|
||||
Must be positive int number or 0D int32/int64 Tensor.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as `start`, and the shape of :math:`(num)`.
|
||||
Tensor, has the same dtype as `start`, and the shape of :math:`(steps)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `start` or `stop` is not a Tensor.
|
||||
TypeError: If dtype of `start` or dtype of `stop` is not float32 or float64.
|
||||
ValueError: If shape of `start` or shape of `stop` is not 0-D.
|
||||
TypeError: If `num` is not int or 0D int32/int64 Tensor.
|
||||
ValueError: If `num` is not positive int number.
|
||||
TypeError: If `start` or `end` is not a Tensor.
|
||||
TypeError: If dtype of `start` or dtype of `end` is not float32 or float64.
|
||||
ValueError: If shape of `start` or shape of `end` is not 0-D.
|
||||
TypeError: If `steps` is not int or 0D int32/int64 Tensor.
|
||||
ValueError: If `steps` is not positive int number.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> start = Tensor(1, mindspore.float32)
|
||||
>>> stop = Tensor(10, mindspore.float32)
|
||||
>>> num = 5
|
||||
>>> output = ops.linspace(start, stop, num)
|
||||
>>> end = Tensor(10, mindspore.float32)
|
||||
>>> steps = 5
|
||||
>>> output = ops.linspace(start, end, steps)
|
||||
>>> print(output)
|
||||
[ 1. 3.25 5.5 7.75 10. ]
|
||||
"""
|
||||
if not isinstance(start, Tensor):
|
||||
start = Tensor(start, mstype.float32)
|
||||
if not isinstance(stop, Tensor):
|
||||
stop = Tensor(stop, mstype.float32)
|
||||
return linspace_(start, stop, num)
|
||||
if not isinstance(end, Tensor):
|
||||
end = Tensor(end, mstype.float32)
|
||||
return linspace_(start, end, steps)
|
||||
|
||||
|
||||
def det(x):
|
||||
|
|
Loading…
Reference in New Issue