forked from mindspore-Ecosystem/mindspore
update docs master
This commit is contained in:
parent
57bbec4001
commit
9a44f5f473
|
@ -3,3 +3,5 @@ approvers:
|
|||
- Hanshize
|
||||
- rudy_tan
|
||||
- jonyguo
|
||||
- lvyufenghw
|
||||
- zh_qh
|
|
@ -40,7 +40,7 @@ mindspore.dtype
|
|||
============================ =================
|
||||
类型 描述
|
||||
============================ =================
|
||||
``Tensor`` MindSpore中的张量类型。数据格式采用NCHW。详情请参考 `tensor <https://www.gitee.com/mindspore/mindspore/blob/master/mindspore/common/tensor.py>_`.
|
||||
``Tensor`` MindSpore中的张量类型。数据格式采用NCHW。详情请参考 `tensor <https://www.gitee.com/mindspore/mindspore/blob/master/mindspore/python/mindspore/common/tensor.py>_`.
|
||||
``bool_`` 布尔型,值为 ``True`` 或者 ``False`` 。
|
||||
``int_`` 整数标量。
|
||||
``uint`` 无符号整数标量。
|
||||
|
|
|
@ -15,24 +15,24 @@ The objective of MDP is to integrate deep learning with Bayesian learning. On th
|
|||
|
||||
### Layer 1-1: Statistical distributions classes used to generate stochastic tensors
|
||||
|
||||
- Distributions ([mindspore.nn.probability.distribution](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/distribution)): A large collection of probability distributions.
|
||||
- Bijectors([mindspore.nn.probability.bijectors](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bijector)): Reversible and composable transformations of random variables.
|
||||
- Distributions ([mindspore.nn.probability.distribution](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/distribution)): A large collection of probability distributions.
|
||||
- Bijectors([mindspore.nn.probability.bijectors](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/bijector)): Reversible and composable transformations of random variables.
|
||||
|
||||
### Layer 1-2: Probabilistic inference algorithms
|
||||
|
||||
- SVI([mindspore.nn.probability.infer.variational](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/infer/variational)): A unified interface for stochastic variational inference.
|
||||
- SVI([mindspore.nn.probability.infer.variational](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/infer/variational)): A unified interface for stochastic variational inference.
|
||||
- MC: Algorithms for approximating integrals via sampling.
|
||||
|
||||
## Layer 2: Deep Probabilistic Programming (DPP) aims to provide composable BNN modules
|
||||
|
||||
- Layers([mindspore.nn.probability.bnn_layers](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bnn_layers)): BNN layers, which are used to construct BNN.
|
||||
- Dpn([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A bunch of BNN models that allow to be integrated into DNN;
|
||||
- Transform([mindspore.nn.probability.transforms](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/transforms)): Interfaces for the transformation between BNN and DNN;
|
||||
- Layers([mindspore.nn.probability.bnn_layers](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/bnn_layers)): BNN layers, which are used to construct BNN.
|
||||
- Dpn([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/dpn)): A bunch of BNN models that allow to be integrated into DNN;
|
||||
- Transform([mindspore.nn.probability.transforms](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/transforms)): Interfaces for the transformation between BNN and DNN;
|
||||
- Context: context managers for models and layers.
|
||||
|
||||
## Layer 3: Toolbox provides a set of BNN tools for some specific applications
|
||||
|
||||
- Uncertainty Estimation([mindspore.nn.probability.toolbox.uncertainty_evaluation](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/toolbox/uncertainty_evaluation.py)): Interfaces to estimate epistemic uncertainty and aleatoric uncertainty.
|
||||
- Uncertainty Estimation([mindspore.nn.probability.toolbox.uncertainty_evaluation](https://gitee.com/mindspore/mindspore/tree/master/mindspore/python/mindspore/nn/probability/toolbox/uncertainty_evaluation.py)): Interfaces to estimate epistemic uncertainty and aleatoric uncertainty.
|
||||
- OoD detection: Interfaces to detect out of distribution samples.
|
||||
|
||||
![Structure of MDP](https://images.gitee.com/uploads/images/2020/0820/115117_2a20da64_7825995.png "MDP.png")
|
||||
|
|
Loading…
Reference in New Issue