forked from mindspore-Ecosystem/mindspore
fix docs
This commit is contained in:
parent
69416d105f
commit
9952da5a90
|
@ -52,13 +52,13 @@ Dataset used:
|
|||
|
||||
在通过官方网站安装MindSpore之后,你可以通过如下步骤开始训练以及评估:
|
||||
|
||||
- runing on Ascend with default paramaters
|
||||
- running on Ascend with default parameters
|
||||
|
||||
```python
|
||||
# run training example
|
||||
python train.py --device_id device_id
|
||||
|
||||
# run evaluation example with default paramaters
|
||||
# run evaluation example with default parameters
|
||||
python eval.py --device_id device_id
|
||||
```
|
||||
|
||||
|
@ -202,7 +202,7 @@ Dataset used:
|
|||
| outputs | probability
|
||||
| Loss | 0.038
|
||||
| Speed | 1pc: 564.652 ms/step;
|
||||
| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/r1.0/model_zoo/official/cv/FCN)
|
||||
| Scripts | [FCN script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/FCN8s)
|
||||
|
||||
### Inference Performance
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ In the currently provided training script, the coco2017 data set is used as an e
|
|||
````bash
|
||||
wget http://images.cocodataset.org/zips/train2017.zip
|
||||
wget http://images.cocodataset.org/zips/val2017.zip
|
||||
wget http://images.cocodataset.org/annotations/annotations2017.zip
|
||||
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
|
||||
````
|
||||
|
||||
- Create the mask dataset.
|
||||
|
|
|
@ -32,7 +32,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s
|
|||
|
||||
# [Dataset](#contents)
|
||||
|
||||
- [1] A dataset [Criteo](https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz) used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
|
||||
- [1] A dataset Criteo used in Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[J]. 2017.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
|
@ -48,7 +48,7 @@ AutoDis leverages a set of meta-embeddings for each numerical field, which are s
|
|||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
- runing on Ascend
|
||||
- running on Ascend
|
||||
|
||||
```python
|
||||
# run training example
|
||||
|
|
Loading…
Reference in New Issue