forked from mindspore-Ecosystem/mindspore
add the impl of runtime actors
This commit is contained in:
parent
33e010db69
commit
98ce7c2039
|
@ -208,6 +208,7 @@ set(SUB_COMP
|
|||
backend/kernel_compiler
|
||||
backend/session
|
||||
runtime/device
|
||||
runtime/framework
|
||||
runtime/hardware
|
||||
runtime/hccl_adapter
|
||||
frontend/optimizer
|
||||
|
|
|
@ -44,6 +44,7 @@ class TaskGenerator;
|
|||
namespace gpu {
|
||||
class GPUKernelRuntime;
|
||||
class GPUMemoryManager;
|
||||
class GPUDeviceContext;
|
||||
} // namespace gpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
@ -107,6 +108,7 @@ class DeviceAddress : public mindspore::DeviceSync {
|
|||
friend class mindspore::device::cpu::CPUDeviceContext;
|
||||
friend class mindspore::device::gpu::GPUKernelRuntime;
|
||||
friend class mindspore::device::gpu::GPUMemoryManager;
|
||||
friend class mindspore::device::gpu::GPUDeviceContext;
|
||||
friend class mindspore::device::ascend::AscendKernelRuntime;
|
||||
friend class mindspore::device::ascend::AscendMemoryManager;
|
||||
friend class mindspore::device::ascend::DataDumper;
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
include_directories(${CMAKE_SOURCE_DIR}/mindspore/core/mindrt/include)
|
||||
include_directories(${CMAKE_SOURCE_DIR}/mindspore/core/mindrt/src)
|
||||
|
||||
file(GLOB_RECURSE FRAMEWORK_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
|
||||
|
||||
set_property(SOURCE ${FRAMEWORK_SRC_LIST}
|
||||
PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_RUNTIME_FRAMEWORK)
|
||||
add_library(_mindspore_runtime_framework_obj OBJECT ${FRAMEWORK_SRC_LIST})
|
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_ACTOR_COMMON_H_
|
||||
#define MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_ACTOR_COMMON_H_
|
||||
|
||||
#include <utility>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
// The execution result of actor.
|
||||
constexpr int kSuccess = 0;
|
||||
constexpr int kFailure = 1;
|
||||
|
||||
#define SET_OPCONTEXT_FAIL_RET_WITH_ERROR(op_context, message) \
|
||||
{ \
|
||||
MS_LOG(ERROR) << message; \
|
||||
op_context.SetFailed(kFailure); \
|
||||
return; \
|
||||
}
|
||||
|
||||
#define SET_OPCONTEXT_SUCCESS_RET(op_context) \
|
||||
{ \
|
||||
op_context.SetSuccess(kSuccess); \
|
||||
return; \
|
||||
}
|
||||
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_ACTOR_COMMON_H_
|
|
@ -0,0 +1,163 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/framework/actor/data_source_actor.h"
|
||||
#include "runtime/framework/actor/kernel_actor.h"
|
||||
#include "runtime/framework/actor/memory_manager_actor.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "common/trans.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
void DataSourceActor::FetchData(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
if (buffers_.size() == buffer_capacity_) {
|
||||
// Send output to trigger computing and free memory.
|
||||
SendOutput(context);
|
||||
FreeMemory(context);
|
||||
buffers_.pop();
|
||||
return;
|
||||
}
|
||||
|
||||
// Construct device tensors and fill to the buffers from member nodes.
|
||||
FillDataBuffer();
|
||||
if (buffers_.size() == 0) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "The data queue is empty.");
|
||||
}
|
||||
|
||||
// Allocate memory for device tensors.
|
||||
AllocateMemory(context);
|
||||
}
|
||||
|
||||
void DataSourceActor::AllocateMemory(OpContext<DeviceTensor> *context) {
|
||||
auto device_tensors = buffers_.back();
|
||||
Async(memory_manager_aid_, &MemoryManagerActor::AllocateMemory, device_tensors, device_context_, context, GetAID());
|
||||
}
|
||||
|
||||
void DataSourceActor::FreeMemory(OpContext<DeviceTensor> *context) {
|
||||
auto device_tensors = buffers_.front();
|
||||
Async(memory_manager_aid_, &MemoryManagerActor::FreeMemory, device_tensors, device_context_, context);
|
||||
}
|
||||
|
||||
void DataSourceActor::SendOutput(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
if (buffers_.size() == 0) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "The data queue is empty.");
|
||||
}
|
||||
|
||||
// Send output data.
|
||||
auto output_device_tensors = buffers_.front();
|
||||
for (auto &op_arrow : output_op_arrows_) {
|
||||
MS_EXCEPTION_IF_NULL(op_arrow);
|
||||
if (IntToSize(op_arrow->from_output_index_) >= output_device_tensors.size()) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "The output index is of range.");
|
||||
}
|
||||
auto device_address = output_device_tensors[op_arrow->from_output_index_];
|
||||
auto data = std::make_shared<OpData<DeviceTensor>>(op_arrow->to_op_id_, device_address, op_arrow->to_input_index_);
|
||||
Async(op_arrow->to_op_id_, &KernelActor::RunOpData, data, context);
|
||||
}
|
||||
}
|
||||
|
||||
void DeviceQueueDataSourceActor::FillDataBuffer() {
|
||||
// Construct device tensors.
|
||||
std::vector<DeviceTensor *> device_tensors;
|
||||
for (size_t i = 0; i < AnfAlgo::GetOutputTensorNum(data_kernel_); ++i) {
|
||||
auto device_address = AnfAlgo::GetMutableOutputAddr(data_kernel_, i, false);
|
||||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
device_tensors.emplace_back(device_address.get());
|
||||
}
|
||||
|
||||
buffers_.push(device_tensors);
|
||||
}
|
||||
|
||||
void DeviceQueueDataSourceActor::OnMemoryAllocFinish(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
MS_EXCEPTION_IF_NULL(device_context_);
|
||||
if (buffers_.size() == 0) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "The data queue is empty.");
|
||||
}
|
||||
|
||||
// Construct outputs of data kernel launching.
|
||||
auto device_tensors = buffers_.back();
|
||||
std::vector<AddressPtr> kernel_outputs;
|
||||
for (auto &device_tensor : device_tensors) {
|
||||
MS_EXCEPTION_IF_NULL(device_tensor);
|
||||
kernel_outputs.emplace_back(std::make_shared<Address>(device_tensor->GetMutablePtr(), device_tensor->GetSize()));
|
||||
}
|
||||
|
||||
// Copy data from device queue by data kernel launching.
|
||||
std::vector<AddressPtr> empty_address;
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(data_kernel_);
|
||||
auto ret = device_context_->LaunchKernel(kernel_mod, empty_address, empty_address, kernel_outputs);
|
||||
if (!ret) {
|
||||
std::string error_info = "Launch kernel failed: " + data_kernel_->ToString();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
|
||||
// Send output to trigger computing and free memory.
|
||||
SendOutput(context);
|
||||
FreeMemory(context);
|
||||
buffers_.pop();
|
||||
}
|
||||
|
||||
void HostQueueDataSourceActor::FillDataBuffer() {
|
||||
// Construct device tensors.
|
||||
std::vector<DeviceTensor *> device_tensors;
|
||||
for (auto &data_node : data_nodes_) {
|
||||
auto device_address = AnfAlgo::GetMutableOutputAddr(data_node, 0, false);
|
||||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
device_tensors.emplace_back(device_address.get());
|
||||
}
|
||||
|
||||
buffers_.push(device_tensors);
|
||||
}
|
||||
|
||||
void HostQueueDataSourceActor::OnMemoryAllocFinish(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
if (buffers_.size() == 0) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "The data queue is empty.");
|
||||
}
|
||||
|
||||
// Get host tensors from host queue and get device tensors from buffers.
|
||||
MS_EXCEPTION_IF_NULL(host_queue_);
|
||||
auto host_tensors = host_queue_->PullData();
|
||||
auto device_tensors = buffers_.back();
|
||||
if (host_tensors.size() != device_tensors.size()) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context),
|
||||
"The length of host tensors is not equal to the length of device tensors.");
|
||||
}
|
||||
|
||||
// Copy data from host tensor to device tensor.
|
||||
for (size_t i = 0; i < host_tensors.size(); ++i) {
|
||||
auto host_tensor = host_tensors[i];
|
||||
auto device_tensor = device_tensors[i];
|
||||
MS_EXCEPTION_IF_NULL(host_tensor);
|
||||
MS_EXCEPTION_IF_NULL(device_tensor);
|
||||
if (!device_tensor->SyncHostToDevice(trans::GetRuntimePaddingShape(data_nodes_[i], 0),
|
||||
LongToSize(host_tensor->data().nbytes()), host_tensor->data_type(),
|
||||
host_tensor->data_c())) {
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), "SyncHostToDevice failed.");
|
||||
}
|
||||
}
|
||||
|
||||
// Send output to trigger computing and free memory.
|
||||
SendOutput(context);
|
||||
FreeMemory(context);
|
||||
buffers_.pop();
|
||||
}
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
|
@ -22,43 +22,73 @@
|
|||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "mindrt/include/async/future.h"
|
||||
#include <utility>
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/framework/actor/memory_interface_actor.h"
|
||||
#include "runtime/hardware/device_context.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
#include "runtime/framework/host_tensor_queue.h"
|
||||
#include "base/base.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
// The data source actor is used to fetch data and process them into device tensors,
|
||||
// and then send them to kernel actor.
|
||||
class DataSourceActor : public ActorBase {
|
||||
using mindspore::device::DeviceContext;
|
||||
|
||||
// The data source actor is used to fetch data from data source and process them into device tensors,
|
||||
// and then send them to kernel actor. The processing flow is FetchData -> FillDataBuffer -> AllocateMemory
|
||||
// -> OnMemoryAllocFinish -> SendOutput -> FreeMemory.
|
||||
class DataSourceActor : public MemoryInterfaceActor {
|
||||
public:
|
||||
DataSourceActor(std::string name, size_t buffer_capacity) : ActorBase(name), buffer_capacity_(buffer_capacity) {}
|
||||
DataSourceActor(std::string name, size_t buffer_capacity, const DeviceContext *device_context,
|
||||
const AID memory_manager_aid)
|
||||
: MemoryInterfaceActor(name),
|
||||
buffer_capacity_(buffer_capacity),
|
||||
device_context_(device_context),
|
||||
memory_manager_aid_(memory_manager_aid) {}
|
||||
virtual ~DataSourceActor() = default;
|
||||
|
||||
// The process entry of data processing.
|
||||
virtual void FetchData(OpContext<DeviceTensor> *context) = 0;
|
||||
void FetchData(OpContext<DeviceTensor> *context);
|
||||
|
||||
// The memory related operation interface.
|
||||
void AllocateMemory(OpContext<DeviceTensor> *context) override;
|
||||
void FreeMemory(OpContext<DeviceTensor> *context) override;
|
||||
// Copy data from data source to the device tensor buffer of actor after memory alloc finished.
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *context) override{};
|
||||
|
||||
protected:
|
||||
// Construct the device tensors and fill to device tensor buffer from the member nodes during the data fetching.
|
||||
virtual void FillDataBuffer() = 0;
|
||||
|
||||
// Send output to downstream actors to trigger computing after fetching data finished.
|
||||
void SendOutput(OpContext<DeviceTensor> *context);
|
||||
|
||||
// To trigger kernel actors running by op arrows.
|
||||
std::vector<OpArrowPtr> output_op_arrows_;
|
||||
|
||||
// The buffers store the data.
|
||||
std::queue<std::vector<DeviceTensorPtr>> buffers_;
|
||||
// The buffers store the device tensors.
|
||||
std::queue<std::vector<DeviceTensor *>> buffers_;
|
||||
size_t buffer_capacity_;
|
||||
|
||||
// The sequential number of corresponding batch data.
|
||||
std::queue<uuids::uuid *> sequential_nums_;
|
||||
// The device interface of data copy.
|
||||
const DeviceContext *device_context_;
|
||||
|
||||
// The id of memory manager actor. Send message to it for alloc and free memory during the data processing.
|
||||
const AID memory_manager_aid_;
|
||||
};
|
||||
|
||||
// The class represents that the data source is device queue.
|
||||
class DeviceQueueDataSourceActor : public DataSourceActor {
|
||||
public:
|
||||
DeviceQueueDataSourceActor(std::string name, size_t buffer_capacity) : DataSourceActor(name, buffer_capacity) {}
|
||||
virtual ~DeviceQueueDataSourceActor() = default;
|
||||
DeviceQueueDataSourceActor(std::string name, size_t buffer_capacity, const DeviceContext *device_context,
|
||||
const AID memory_manager_aid)
|
||||
: DataSourceActor(name, buffer_capacity, device_context, memory_manager_aid) {}
|
||||
~DeviceQueueDataSourceActor() override = default;
|
||||
|
||||
void FetchData(OpContext<DeviceTensor> *context) override;
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *context) override;
|
||||
|
||||
protected:
|
||||
void FillDataBuffer() override;
|
||||
|
||||
private:
|
||||
friend class GraphScheduler;
|
||||
|
@ -70,11 +100,15 @@ class DeviceQueueDataSourceActor : public DataSourceActor {
|
|||
// The class represents that the data source is host queue.
|
||||
class HostQueueDataSourceActor : public DataSourceActor {
|
||||
public:
|
||||
HostQueueDataSourceActor(std::string name, size_t buffer_capacity, HostTensorQueuePtr host_queue)
|
||||
: DataSourceActor(name, buffer_capacity), host_queue_(host_queue) {}
|
||||
virtual ~HostQueueDataSourceActor() = default;
|
||||
HostQueueDataSourceActor(std::string name, size_t buffer_capacity, const DeviceContext *device_context,
|
||||
const AID memory_manager_aid, HostTensorQueuePtr host_queue)
|
||||
: DataSourceActor(name, buffer_capacity, device_context, memory_manager_aid), host_queue_(host_queue) {}
|
||||
~HostQueueDataSourceActor() override = default;
|
||||
|
||||
void FetchData(OpContext<DeviceTensor> *context) override;
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *context) override;
|
||||
|
||||
protected:
|
||||
void FillDataBuffer() override;
|
||||
|
||||
private:
|
||||
friend class GraphScheduler;
|
||||
|
|
|
@ -0,0 +1,190 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/framework/actor/kernel_actor.h"
|
||||
#include "runtime/framework/actor/memory_manager_actor.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
void KernelActor::RunOpData(OpDataPtr<DeviceTensor> input_data, OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
auto sequential_num = context->sequential_num_;
|
||||
input_op_datas_[sequential_num].emplace_back(input_data);
|
||||
// When all the input data are collected, then allocate memory and callback launch.
|
||||
if (CheckLaunchCondition(context)) {
|
||||
FetchInputDeviceTensor(context);
|
||||
FetchOutputDeviceTensor();
|
||||
FetchWorkspaceDeviceTensor();
|
||||
AllocateMemory(context);
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::RunOpControl(AID *input_control, OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
auto sequential_num = context->sequential_num_;
|
||||
input_op_controls_[sequential_num].emplace_back(input_control);
|
||||
// When all the input data are collected, then allocate memory and callback launch.
|
||||
if (CheckLaunchCondition(context)) {
|
||||
FetchInputDeviceTensor(context);
|
||||
FetchOutputDeviceTensor();
|
||||
FetchWorkspaceDeviceTensor();
|
||||
AllocateMemory(context);
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::AllocateMemory(OpContext<DeviceTensor> *context) {
|
||||
std::vector<DeviceTensor *> alloc_list(output_device_tensors_);
|
||||
alloc_list.insert(alloc_list.end(), workspace_device_tensors_.begin(), workspace_device_tensors_.end());
|
||||
Async(memory_manager_aid_, &MemoryManagerActor::AllocateMemory, alloc_list, device_context_, context, GetAID());
|
||||
}
|
||||
|
||||
void KernelActor::FreeMemory(OpContext<DeviceTensor> *context) {
|
||||
std::vector<DeviceTensor *> free_list(input_device_tensors_);
|
||||
free_list.insert(free_list.end(), output_device_tensors_.begin(), output_device_tensors_.end());
|
||||
free_list.insert(free_list.end(), workspace_device_tensors_.begin(), workspace_device_tensors_.end());
|
||||
Async(memory_manager_aid_, &MemoryManagerActor::FreeMemory, free_list, device_context_, context);
|
||||
}
|
||||
|
||||
void KernelActor::OnMemoryAllocFinish(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
MS_EXCEPTION_IF_NULL(kernel_);
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(kernel_);
|
||||
std::vector<AddressPtr> kernel_inputs;
|
||||
std::vector<AddressPtr> kernel_outputs;
|
||||
std::vector<AddressPtr> kernel_workspaces;
|
||||
FetchLaunchArgs(&kernel_inputs, &kernel_outputs, &kernel_workspaces);
|
||||
MS_EXCEPTION_IF_NULL(device_context_);
|
||||
auto ret = device_context_->LaunchKernel(kernel_mod, kernel_inputs, kernel_workspaces, kernel_outputs);
|
||||
if (!ret) {
|
||||
std::string error_info = "Launch kernel failed: " + kernel_->ToString();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
SendOutput(context);
|
||||
FreeMemory(context);
|
||||
}
|
||||
|
||||
bool KernelActor::CheckLaunchCondition(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
if (input_datas_num_ != 0) {
|
||||
auto data_iter = input_op_datas_.find(context->sequential_num_);
|
||||
if (data_iter == input_op_datas_.end()) {
|
||||
return false;
|
||||
}
|
||||
if (data_iter->second.size() != input_datas_num_) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (input_controls_num_ != 0) {
|
||||
auto control_iter = input_op_controls_.find(context->sequential_num_);
|
||||
if (control_iter == input_op_controls_.end()) {
|
||||
return false;
|
||||
}
|
||||
if (control_iter->second.size() != input_controls_num_) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void KernelActor::FetchInputDeviceTensor(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
auto input_size = input_datas_num_ + device_tensor_store_keys_.size();
|
||||
input_device_tensors_.resize(input_size);
|
||||
|
||||
auto data_iter = input_op_datas_.find(context->sequential_num_);
|
||||
if (data_iter != input_op_datas_.end()) {
|
||||
for (auto &input_data : data_iter->second) {
|
||||
MS_EXCEPTION_IF_NULL(input_data);
|
||||
input_device_tensors_[input_data->index_] = input_data->data_;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &device_tensor_store_key : device_tensor_store_keys_) {
|
||||
auto device_tensor = DeviceTensorStore::GetInstance().Fetch(device_tensor_store_key.second);
|
||||
input_device_tensors_[device_tensor_store_key.first] = device_tensor.get();
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::FetchOutputDeviceTensor() {
|
||||
output_device_tensors_.clear();
|
||||
for (size_t i = 0; i < AnfAlgo::GetOutputTensorNum(kernel_); ++i) {
|
||||
auto device_address = AnfAlgo::GetMutableOutputAddr(kernel_, i, false);
|
||||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
output_device_tensors_.emplace_back(device_address.get());
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::FetchWorkspaceDeviceTensor() {
|
||||
workspace_device_tensors_.clear();
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(kernel_);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod);
|
||||
auto workspace_sizes = kernel_mod->GetWorkspaceSizeList();
|
||||
for (size_t i = 0; i < workspace_sizes.size(); ++i) {
|
||||
if (workspace_sizes[i] != 0) {
|
||||
auto device_address = AnfAlgo::GetMutableWorkspaceAddr(kernel_, i);
|
||||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
workspace_device_tensors_.emplace_back(device_address.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::FetchLaunchArgs(std::vector<AddressPtr> *kernel_inputs, std::vector<AddressPtr> *kernel_outputs,
|
||||
std::vector<AddressPtr> *kernel_workspaces) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_inputs);
|
||||
MS_EXCEPTION_IF_NULL(kernel_outputs);
|
||||
MS_EXCEPTION_IF_NULL(kernel_workspaces);
|
||||
for (auto &input : input_device_tensors_) {
|
||||
MS_EXCEPTION_IF_NULL(input);
|
||||
kernel_inputs->emplace_back(std::make_shared<Address>(input->GetMutablePtr(), input->GetSize()));
|
||||
}
|
||||
|
||||
for (auto &output : output_device_tensors_) {
|
||||
MS_EXCEPTION_IF_NULL(output);
|
||||
kernel_outputs->emplace_back(std::make_shared<Address>(output->GetMutablePtr(), output->GetSize()));
|
||||
}
|
||||
|
||||
for (auto &workspace : workspace_device_tensors_) {
|
||||
MS_EXCEPTION_IF_NULL(workspace);
|
||||
kernel_workspaces->emplace_back(std::make_shared<Address>(workspace->GetMutablePtr(), workspace->GetSize()));
|
||||
}
|
||||
}
|
||||
|
||||
void KernelActor::SendOutput(OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
// Send output data.
|
||||
for (auto &op_arrow : output_op_arrows_) {
|
||||
MS_EXCEPTION_IF_NULL(op_arrow);
|
||||
if (IntToSize(op_arrow->from_output_index_) >= output_device_tensors_.size()) {
|
||||
std::string error_info = "The output index is out of range: " + kernel_->ToString();
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*context), error_info);
|
||||
}
|
||||
auto device_address = output_device_tensors_[op_arrow->from_output_index_];
|
||||
auto data = std::make_shared<OpData<DeviceTensor>>(op_arrow->to_op_id_, device_address, op_arrow->to_input_index_);
|
||||
Async(op_arrow->to_op_id_, &KernelActor::RunOpData, data, context);
|
||||
}
|
||||
|
||||
// Send output control.
|
||||
auto source_aid = const_cast<AID *>(&GetAID());
|
||||
for (auto &output_control : output_op_controls_) {
|
||||
Async(output_control, &OpActor::RunOpControl, source_aid, context);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
|
@ -22,7 +22,8 @@
|
|||
#include <memory>
|
||||
#include <utility>
|
||||
#include <unordered_map>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/framework/actor/memory_interface_actor.h"
|
||||
#include "runtime/hardware/device_context.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
#include "backend/kernel_compiler/kernel.h"
|
||||
|
@ -31,38 +32,47 @@
|
|||
namespace mindspore {
|
||||
namespace runtime {
|
||||
using mindspore::device::DeviceContext;
|
||||
using mindspore::kernel::Address;
|
||||
using mindspore::kernel::AddressPtr;
|
||||
|
||||
// The kernel actor is used to receive the device tensors and control info to luanch kernel.
|
||||
class KernelActor : public OpActor<DeviceTensor> {
|
||||
// The processing flow is RunOpData/RunOpControl -> CheckLaunchCondition -> AllocateMemory
|
||||
// -> OnMemoryAllocFinish -> LaunchKernel -> SendOutput -> FreeMemory.
|
||||
class KernelActor : public MemoryInterfaceActor {
|
||||
public:
|
||||
KernelActor(std::string name, CNodePtr kernel, const DeviceContext *device_context)
|
||||
: OpActor(name), kernel_(kernel), device_context_(device_context), input_datas_num_(0), input_controls_num_(0) {}
|
||||
virtual ~KernelActor() = default;
|
||||
KernelActor(std::string name, CNodePtr kernel, const DeviceContext *device_context, const AID memory_manager_aid)
|
||||
: MemoryInterfaceActor(name),
|
||||
kernel_(kernel),
|
||||
device_context_(device_context),
|
||||
memory_manager_aid_(memory_manager_aid),
|
||||
input_datas_num_(0),
|
||||
input_controls_num_(0) {}
|
||||
~KernelActor() override = default;
|
||||
|
||||
// The kernel actor run when receive the input data.
|
||||
void RunOpData(OpDataPtr<DeviceTensor> input_data, OpContext<DeviceTensor> *context) override;
|
||||
// The kernel actor run when receive the input control.
|
||||
void RunOpControl(AID *input_control, OpContext<DeviceTensor> *context) override;
|
||||
|
||||
// The memory related operation interface.
|
||||
void AllocateMemory(OpContext<DeviceTensor> *context) override;
|
||||
void FreeMemory(OpContext<DeviceTensor> *context) override;
|
||||
// The real kernel launch processing after memory alloc finished.
|
||||
void OnMemoryAllocFinish(OpContext<DeviceTensor> *context) override;
|
||||
|
||||
private:
|
||||
friend class GraphScheduler;
|
||||
|
||||
// Check whether satisfy the condition for launch.
|
||||
bool CheckLaunchCondition(const uuids::uuid *sequential_num);
|
||||
bool CheckLaunchCondition(OpContext<DeviceTensor> *context);
|
||||
// Fetch the args of kernel launch.
|
||||
void FetchLaunchArgs(std::vector<AddressPtr> *kernel_inputs, std::vector<AddressPtr> *kernel_outputs,
|
||||
std::vector<AddressPtr> *kernel_workspaces);
|
||||
// The real kernel launch processing.
|
||||
void Launch(OpContext<DeviceTensor> *context);
|
||||
// Send output data and output controls when finish kernel launch.
|
||||
void SendOutput(OpContext<DeviceTensor> *context);
|
||||
|
||||
void AllocateMemory(OpContext<DeviceTensor> *context);
|
||||
void FreeMemory(OpContext<DeviceTensor> *context);
|
||||
|
||||
// Fetch the device tensor for launch.
|
||||
void FetchInputDeviceTensor(const uuids::uuid *sequential_num);
|
||||
void FetchInputDeviceTensor(OpContext<DeviceTensor> *context);
|
||||
void FetchOutputDeviceTensor();
|
||||
void FetchWorkspaceDeviceTensor();
|
||||
|
||||
|
@ -70,6 +80,9 @@ class KernelActor : public OpActor<DeviceTensor> {
|
|||
// The device interface of kernel launch.
|
||||
const DeviceContext *device_context_;
|
||||
|
||||
// The id of memory manager actor. Send message to it for alloc and free memory during the kernel launch.
|
||||
const AID memory_manager_aid_;
|
||||
|
||||
// The dependent input data number.
|
||||
size_t input_datas_num_;
|
||||
// The dependent input controls number.
|
||||
|
@ -79,9 +92,9 @@ class KernelActor : public OpActor<DeviceTensor> {
|
|||
std::vector<std::pair<size_t, void *>> device_tensor_store_keys_;
|
||||
|
||||
// The device tensors for launch.
|
||||
std::vector<DeviceTensorPtr> input_device_tensors_;
|
||||
std::vector<DeviceTensorPtr> output_device_tensors_;
|
||||
std::vector<DeviceTensorPtr> workspace_device_tensors_;
|
||||
std::vector<DeviceTensor *> input_device_tensors_;
|
||||
std::vector<DeviceTensor *> output_device_tensors_;
|
||||
std::vector<DeviceTensor *> workspace_device_tensors_;
|
||||
};
|
||||
|
||||
using KernelActorPtr = std::shared_ptr<KernelActor>;
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/framework/actor/loop_count_actor.h"
|
||||
#include "runtime/framework/actor/data_source_actor.h"
|
||||
#include "runtime/framework/actor/kernel_actor.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
void LoopCountActor::RunOpControl(AID *input_control, OpContext<DeviceTensor> *context) {
|
||||
MS_EXCEPTION_IF_NULL(context);
|
||||
auto sequential_num = context->sequential_num_;
|
||||
input_op_controls_[sequential_num].emplace_back(input_control);
|
||||
if (input_op_controls_[sequential_num].size() == input_controls_num_) {
|
||||
current_count_++;
|
||||
if (current_count_ == loop_count_) {
|
||||
current_count_ = 0;
|
||||
SET_OPCONTEXT_SUCCESS_RET((*context));
|
||||
}
|
||||
|
||||
// Send output control.
|
||||
for (auto &data_source_aid : data_source_aids_) {
|
||||
Async(data_source_aid, &DataSourceActor::FetchData, context);
|
||||
}
|
||||
auto source_aid = const_cast<AID *>(&GetAID());
|
||||
for (auto &kernel_aid : no_input_kernel_aids_) {
|
||||
Async(kernel_aid, &KernelActor::RunOpControl, source_aid, context);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
|
@ -21,7 +21,7 @@
|
|||
#include <string>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -32,7 +32,7 @@ class LoopCountActor : public OpActor<DeviceTensor> {
|
|||
public:
|
||||
LoopCountActor(std::string name, size_t loop_count)
|
||||
: OpActor(name), loop_count_(loop_count), current_count_(0), input_controls_num_(0) {}
|
||||
virtual ~LoopCountActor() = default;
|
||||
~LoopCountActor() override = default;
|
||||
|
||||
// The loop count actor run when receive the input control.
|
||||
void RunOpControl(AID *input_control, OpContext<DeviceTensor> *context) override;
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_MEMORY_INTERFACE_ACTOR_H_
|
||||
#define MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_MEMORY_INTERFACE_ACTOR_H_
|
||||
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
// The actor represents a set of common memory related operations of actor.
|
||||
class MemoryInterfaceActor : public OpActor<DeviceTensor> {
|
||||
public:
|
||||
explicit MemoryInterfaceActor(std::string name) : OpActor(name) {}
|
||||
virtual ~MemoryInterfaceActor() = default;
|
||||
virtual void AllocateMemory(OpContext<DeviceTensor> *context) = 0;
|
||||
virtual void FreeMemory(OpContext<DeviceTensor> *context) = 0;
|
||||
virtual void OnMemoryAllocFinish(OpContext<DeviceTensor> *context) = 0;
|
||||
};
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_RUNTIME_FRAMEWORK_ACTOR_MEMORY_INTERFACE_ACTOR_H_
|
|
@ -0,0 +1,62 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "runtime/framework/actor/memory_manager_actor.h"
|
||||
#include "runtime/framework/actor/data_source_actor.h"
|
||||
#include "runtime/framework/actor/kernel_actor.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace runtime {
|
||||
void MemoryManagerActor::AllocateMemory(std::vector<DeviceTensor *> alloc_list, const DeviceContext *device_context,
|
||||
OpContext<DeviceTensor> *op_context, const AID from_aid) {
|
||||
MS_EXCEPTION_IF_NULL(device_context);
|
||||
MS_EXCEPTION_IF_NULL(op_context);
|
||||
|
||||
for (auto &device_tensor : alloc_list) {
|
||||
MS_EXCEPTION_IF_NULL(device_tensor);
|
||||
if (device_tensor->GetPtr() != nullptr) {
|
||||
continue;
|
||||
}
|
||||
// Allocate memory through the device context.
|
||||
if (!device_context->AllocateMemory(device_tensor, device_tensor->GetSize())) {
|
||||
std::string error_info = "Device memory isn't enough and alloc failed, actor name: " + from_aid.Name() +
|
||||
", alloc size: " + std::to_string(device_tensor->GetSize());
|
||||
SET_OPCONTEXT_FAIL_RET_WITH_ERROR((*op_context), error_info);
|
||||
}
|
||||
}
|
||||
|
||||
// Call back to the from actor to process after memory allocation finished.
|
||||
Async(from_aid, &MemoryInterfaceActor::OnMemoryAllocFinish, op_context);
|
||||
}
|
||||
|
||||
void MemoryManagerActor::FreeMemory(std::vector<DeviceTensor *> free_list, const DeviceContext *device_context,
|
||||
OpContext<DeviceTensor> *) {
|
||||
MS_EXCEPTION_IF_NULL(device_context);
|
||||
for (auto &device_tensor : free_list) {
|
||||
MS_EXCEPTION_IF_NULL(device_tensor);
|
||||
// The reference count is decremented to zero to free memory, and reset to the original count.
|
||||
device_tensor->DecreaseRefCountUsed();
|
||||
if (device_tensor->ref_count_dynamic_used() == 0) {
|
||||
// Free memory through the device context.
|
||||
device_context->FreeMemory(device_tensor);
|
||||
device_tensor->ResetRefCountUsed();
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
|
@ -21,7 +21,7 @@
|
|||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include "mindrt/include/actor/op_actor.h"
|
||||
#include "runtime/framework/actor/actor_common.h"
|
||||
#include "runtime/framework/device_tensor_store.h"
|
||||
#include "runtime/hardware/device_context.h"
|
||||
|
||||
|
@ -36,10 +36,10 @@ class MemoryManagerActor : public ActorBase {
|
|||
~MemoryManagerActor() override = default;
|
||||
|
||||
// The process entry of memory alloc.
|
||||
bool AllocateMemory(std::vector<DeviceTensorPtr> alloc_list, const DeviceContext *device_context,
|
||||
OpContext<DeviceTensor> *op_context);
|
||||
void AllocateMemory(std::vector<DeviceTensor *> alloc_list, const DeviceContext *device_context,
|
||||
OpContext<DeviceTensor> *op_context, const AID from_aid);
|
||||
// The process entry of memory free.
|
||||
void FreeMemory(std::vector<DeviceTensorPtr> free_list, const DeviceContext *device_context,
|
||||
void FreeMemory(std::vector<DeviceTensor *> free_list, const DeviceContext *device_context,
|
||||
OpContext<DeviceTensor> *op_context);
|
||||
};
|
||||
} // namespace runtime
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
*/
|
||||
|
||||
#include "runtime/framework/graph_scheduler.h"
|
||||
#include "runtime/framework/actor/memory_manager_actor.h"
|
||||
#include "mindrt/src/actor/actormgr.h"
|
||||
#include "mindrt/include/async/async.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
|
@ -102,6 +103,23 @@ void UpdateRefCount(const AnfNodePtr &node, size_t output_idx) {
|
|||
}
|
||||
} // namespace
|
||||
|
||||
void GraphScheduler::Initialize() {
|
||||
if (init_) {
|
||||
return;
|
||||
}
|
||||
init_ = true;
|
||||
|
||||
// Create memory manager actor.
|
||||
auto memory_manager_actor = std::make_shared<MemoryManagerActor>();
|
||||
MS_EXCEPTION_IF_NULL(memory_manager_actor);
|
||||
memory_manager_aid_ = memory_manager_actor->GetAID();
|
||||
// Schedule memory manager actor, bind single thread to response to memory alloc and free quickly.
|
||||
auto base_actor = static_cast<ActorReference>(memory_manager_actor);
|
||||
auto actorMgr = ActorMgr::GetActorMgrRef();
|
||||
MS_EXCEPTION_IF_NULL(actorMgr);
|
||||
(void)actorMgr->Spawn(base_actor, false);
|
||||
}
|
||||
|
||||
ActorSet *GraphScheduler::Transform(const KernelGraphPtr &graph, const DeviceContext *device_context,
|
||||
const std::vector<tensor::TensorPtr> *input_tensors,
|
||||
GraphExecutionStrategy strategy) {
|
||||
|
@ -191,7 +209,7 @@ ActorSetPtr GraphScheduler::Build(const KernelGraphPtr &graph, const DeviceConte
|
|||
auto actor_set = std::make_shared<ActorSet>();
|
||||
MS_EXCEPTION_IF_NULL(actor_set);
|
||||
|
||||
auto data_source_actors = BuildDataSourceActor(graph);
|
||||
auto data_source_actors = BuildDataSourceActor(graph, device_context);
|
||||
actor_set->data_source_actors_.swap(data_source_actors);
|
||||
|
||||
auto kernel_actors = BuildKernelActor(graph, device_context);
|
||||
|
@ -251,7 +269,8 @@ void GraphScheduler::Link(ActorSet *actor_set, const KernelGraphPtr &graph, Grap
|
|||
LinkControlArrowForLoopCountActor(actor_set->loop_count_actor_.get(), graph);
|
||||
}
|
||||
|
||||
std::vector<DataSourceActorPtr> GraphScheduler::BuildDataSourceActor(const KernelGraphPtr &graph) {
|
||||
std::vector<DataSourceActorPtr> GraphScheduler::BuildDataSourceActor(const KernelGraphPtr &graph,
|
||||
const DeviceContext *device_context) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
std::vector<DataSourceActorPtr> data_source_actors;
|
||||
|
||||
|
@ -265,7 +284,8 @@ std::vector<DataSourceActorPtr> GraphScheduler::BuildDataSourceActor(const Kerne
|
|||
MS_LOG(INFO) << "Create host queue data source actor: " << actor_name;
|
||||
auto host_queue = std::make_shared<HostTensorQueue>();
|
||||
graph_to_host_queue_.emplace(graph, host_queue);
|
||||
host_queue_ds_actor = std::make_shared<HostQueueDataSourceActor>(actor_name, 1, host_queue);
|
||||
host_queue_ds_actor =
|
||||
std::make_shared<HostQueueDataSourceActor>(actor_name, 1, device_context, memory_manager_aid_, host_queue);
|
||||
data_source_actors.emplace_back(host_queue_ds_actor);
|
||||
}
|
||||
host_queue_ds_actor->data_nodes_.emplace_back(input_node);
|
||||
|
@ -279,7 +299,8 @@ std::vector<DataSourceActorPtr> GraphScheduler::BuildDataSourceActor(const Kerne
|
|||
if (iter != execution_order.end()) {
|
||||
auto actor_name = graph->ToString() + "_" + "DeviceQueueDataSourceActor";
|
||||
MS_LOG(INFO) << "Create queue data source actor: " << actor_name;
|
||||
auto device_queue_ds_actor = std::make_shared<DeviceQueueDataSourceActor>(actor_name, 1);
|
||||
auto device_queue_ds_actor =
|
||||
std::make_shared<DeviceQueueDataSourceActor>(actor_name, 1, device_context, memory_manager_aid_);
|
||||
MS_EXCEPTION_IF_NULL(device_queue_ds_actor);
|
||||
data_source_actors.emplace_back(device_queue_ds_actor);
|
||||
device_queue_ds_actor->data_kernel_ = *iter;
|
||||
|
@ -295,7 +316,8 @@ std::vector<KernelActorPtr> GraphScheduler::BuildKernelActor(const KernelGraphPt
|
|||
auto execution_order = graph->execution_order();
|
||||
for (auto &kernel : execution_order) {
|
||||
if (IsKernelActor(kernel)) {
|
||||
auto kernel_actor = std::make_shared<KernelActor>(kernel->fullname_with_scope(), kernel, device_context);
|
||||
auto kernel_actor =
|
||||
std::make_shared<KernelActor>(kernel->fullname_with_scope(), kernel, device_context, memory_manager_aid_);
|
||||
MS_EXCEPTION_IF_NULL(kernel_actor);
|
||||
kernel_actors.emplace_back(kernel_actor);
|
||||
}
|
||||
|
|
|
@ -61,6 +61,9 @@ class GraphScheduler {
|
|||
return instance;
|
||||
}
|
||||
|
||||
// The memory manager creating and scheduling.
|
||||
void Initialize();
|
||||
|
||||
// Transform graph to actor DAG, contains build and link.
|
||||
ActorSet *Transform(const KernelGraphPtr &graph, const DeviceContext *device_context,
|
||||
const std::vector<tensor::TensorPtr> *input_tensors = nullptr,
|
||||
|
@ -87,7 +90,8 @@ class GraphScheduler {
|
|||
void Link(ActorSet *actor_set, const KernelGraphPtr &graph, GraphExecutionStrategy strategy);
|
||||
|
||||
// The processing of actors build.
|
||||
std::vector<DataSourceActorPtr> BuildDataSourceActor(const KernelGraphPtr &graph);
|
||||
std::vector<DataSourceActorPtr> BuildDataSourceActor(const KernelGraphPtr &graph,
|
||||
const DeviceContext *device_context);
|
||||
std::vector<KernelActorPtr> BuildKernelActor(const KernelGraphPtr &graph, const DeviceContext *device_context);
|
||||
std::vector<KernelActorPtr> BuildNoInputKernelActor(const KernelGraphPtr &graph);
|
||||
LoopCountActorPtr BuildLoopCountActor(const KernelGraphPtr &graph);
|
||||
|
@ -114,6 +118,11 @@ class GraphScheduler {
|
|||
|
||||
// The second element of pair represents the output index of kernel actor corresponding to the device tensor.
|
||||
std::unordered_map<DeviceTensorPtr, std::pair<KernelActorPtr, int>> device_address_to_actor_;
|
||||
|
||||
// The id of memory manager actor.
|
||||
AID memory_manager_aid_;
|
||||
|
||||
bool init_{false};
|
||||
};
|
||||
} // namespace runtime
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -35,12 +35,12 @@ bool CPUDeviceContext::Initialize() {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool CPUDeviceContext::AllocateMemory(const DeviceAddressPtr &address, size_t size) const {
|
||||
bool CPUDeviceContext::AllocateMemory(DeviceAddress *const &address, size_t size) const {
|
||||
address->ptr_ = static_cast<CPUMemoryManager *>(mem_manager_.get())->StaticMemMalloc(size);
|
||||
return true;
|
||||
}
|
||||
|
||||
void CPUDeviceContext::FreeMemory(const DeviceAddressPtr &address) const {
|
||||
void CPUDeviceContext::FreeMemory(DeviceAddress *const &address) const {
|
||||
static_cast<CPUMemoryManager *>(mem_manager_.get())->MemFree(address->ptr_);
|
||||
address->ptr_ = nullptr;
|
||||
}
|
||||
|
|
|
@ -33,8 +33,8 @@ class CPUDeviceContext : public DeviceContext {
|
|||
|
||||
bool Initialize() override;
|
||||
|
||||
bool AllocateMemory(const DeviceAddressPtr &address, size_t size) const override;
|
||||
void FreeMemory(const DeviceAddressPtr &address) const override;
|
||||
bool AllocateMemory(DeviceAddress *const &address, size_t size) const override;
|
||||
void FreeMemory(DeviceAddress *const &address) const override;
|
||||
|
||||
void SetOperatorInfo(const std::vector<CNodePtr> &nodes) const override;
|
||||
void CreateKernel(const std::vector<CNodePtr> &nodes) const override;
|
||||
|
|
|
@ -52,13 +52,13 @@ class DeviceContext {
|
|||
virtual void Destroy() {}
|
||||
|
||||
// Relevant function to allocate and free device memory.
|
||||
virtual bool AllocateMemory(const DeviceAddressPtr &address, size_t size) const = 0;
|
||||
virtual void FreeMemory(const DeviceAddressPtr &address) const = 0;
|
||||
virtual bool AllocateMemory(DeviceAddress *const &address, size_t size) const = 0;
|
||||
virtual void FreeMemory(DeviceAddress *const &address) const = 0;
|
||||
|
||||
// Allocate continuous device memory end to end into 'addr_list'.
|
||||
// Communication operators may need continuous memory for input and output
|
||||
// to optimize the communication performance.
|
||||
virtual bool AllocateContinuousMemory(const DeviceAddressPtrList &addr_list, size_t total_size,
|
||||
virtual bool AllocateContinuousMemory(const std::vector<DeviceAddress *> &addr_list, size_t total_size,
|
||||
const std::vector<size_t> &size_list) const {
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -115,15 +115,41 @@ void GPUDeviceContext::Destroy() {
|
|||
}
|
||||
}
|
||||
|
||||
bool GPUDeviceContext::AllocateMemory(const DeviceAddressPtr &address, size_t size) const {
|
||||
return mem_manager_->MallocMemFromMemPool(address, size);
|
||||
bool GPUDeviceContext::AllocateMemory(DeviceAddress *const &address, size_t size) const {
|
||||
MS_EXCEPTION_IF_NULL(address);
|
||||
auto device_ptr = mem_manager_->MallocMemFromMemPool(size);
|
||||
if (!device_ptr) {
|
||||
return false;
|
||||
}
|
||||
address->ptr_ = device_ptr;
|
||||
address->size_ = size;
|
||||
address->from_mem_pool_ = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void GPUDeviceContext::FreeMemory(const DeviceAddressPtr &address) const { mem_manager_->FreeMemFromMemPool(address); }
|
||||
void GPUDeviceContext::FreeMemory(DeviceAddress *const &address) const {
|
||||
MS_EXCEPTION_IF_NULL(address);
|
||||
MS_EXCEPTION_IF_NULL(address->ptr_);
|
||||
mem_manager_->FreeMemFromMemPool(address->ptr_);
|
||||
address->ptr_ = nullptr;
|
||||
}
|
||||
|
||||
bool GPUDeviceContext::AllocateContinuousMemory(const DeviceAddressPtrList &addr_list, size_t total_size,
|
||||
bool GPUDeviceContext::AllocateContinuousMemory(const std::vector<DeviceAddress *> &addr_list, size_t total_size,
|
||||
const std::vector<size_t> &size_list) const {
|
||||
return mem_manager_->MallocContinuousMemFromMemPool(addr_list, total_size, size_list);
|
||||
auto device_ptr_list = mem_manager_->MallocContinuousMemFromMemPool(total_size, size_list);
|
||||
if (device_ptr_list.size() == 0) {
|
||||
return false;
|
||||
}
|
||||
if (addr_list.size() != device_ptr_list.size()) {
|
||||
MS_LOG(EXCEPTION) << "The size of device list is not equal to the size of address list.";
|
||||
}
|
||||
for (size_t i = 0; i < addr_list.size(); i++) {
|
||||
MS_EXCEPTION_IF_NULL(device_ptr_list[i]);
|
||||
MS_EXCEPTION_IF_NULL(addr_list[i]);
|
||||
addr_list[i]->ptr_ = device_ptr_list[i];
|
||||
addr_list[i]->from_mem_pool_ = true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void GPUDeviceContext::SetOperatorInfo(const std::vector<CNodePtr> &nodes) const {
|
||||
|
|
|
@ -38,9 +38,9 @@ class GPUDeviceContext : public DeviceContext {
|
|||
// Release device memory, stream, cudnn and cublas handle, etc.
|
||||
void Destroy() override;
|
||||
|
||||
bool AllocateMemory(const DeviceAddressPtr &address, size_t size) const override;
|
||||
void FreeMemory(const DeviceAddressPtr &address) const override;
|
||||
bool AllocateContinuousMemory(const DeviceAddressPtrList &addr_list, size_t total_size,
|
||||
bool AllocateMemory(DeviceAddress *const &address, size_t size) const override;
|
||||
void FreeMemory(DeviceAddress *const &address) const override;
|
||||
bool AllocateContinuousMemory(const std::vector<DeviceAddress *> &addr_list, size_t total_size,
|
||||
const std::vector<size_t> &size_list) const override;
|
||||
|
||||
void SetOperatorInfo(const std::vector<CNodePtr> &nodes) const override;
|
||||
|
|
|
@ -33,6 +33,9 @@ endif()
|
|||
set_property(SOURCE ${CORE_SRC_LIST} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_CORE)
|
||||
add_library(mindspore_core STATIC ${CORE_SRC_LIST})
|
||||
target_link_libraries(mindspore_core PRIVATE mindspore_gvar)
|
||||
if(NOT(COMPILE_LITE))
|
||||
target_link_libraries(mindspore_core PRIVATE mindrt_mid)
|
||||
endif()
|
||||
|
||||
if(USE_GLOG)
|
||||
target_link_libraries(mindspore_core PRIVATE mindspore::glog)
|
||||
|
|
|
@ -58,11 +58,19 @@ struct OpContext {
|
|||
std::vector<Promise<int>> *results_;
|
||||
const void *kernel_call_back_before_;
|
||||
const void *kernel_call_back_after_;
|
||||
|
||||
void SetFailed(int32_t code) {
|
||||
for (auto promise : *results_) {
|
||||
promise.SetFailed(code);
|
||||
}
|
||||
}
|
||||
|
||||
void SetSuccess(int32_t code) {
|
||||
for (auto promise : *results_) {
|
||||
promise.SetValue(code);
|
||||
}
|
||||
}
|
||||
|
||||
void SetResult(size_t index, int value) { results_->at(index).SetValue(value); }
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue