forked from mindspore-Ecosystem/mindspore
fix train fail problem and fix readme.
This commit is contained in:
parent
4637744100
commit
97e3c7374a
|
@ -218,9 +218,9 @@ Parameters for both training and evaluation can be set in config.py
|
|||
|
||||
```
|
||||
# grep "Val AP" eval.log
|
||||
Easy Val AP : 0.9437
|
||||
Medium Val AP : 0.9334
|
||||
Hard Val AP : 0.8904
|
||||
Easy Val AP : 0.9413
|
||||
Medium Val AP : 0.9325
|
||||
Hard Val AP : 0.8900
|
||||
```
|
||||
|
||||
OR,
|
||||
|
@ -233,9 +233,9 @@ Parameters for both training and evaluation can be set in config.py
|
|||
|
||||
```
|
||||
# grep "Val AP" eval.log
|
||||
Easy Val AP : 0.9437
|
||||
Medium Val AP : 0.9334
|
||||
Hard Val AP : 0.8904
|
||||
Easy Val AP : 0.9413
|
||||
Medium Val AP : 0.9325
|
||||
Hard Val AP : 0.8900
|
||||
```
|
||||
|
||||
|
||||
|
@ -258,8 +258,8 @@ Parameters for both training and evaluation can be set in config.py
|
|||
| Loss Function | MultiBoxLoss + Softmax Cross Entropy |
|
||||
| outputs | bounding box + confidence + landmark |
|
||||
| Loss | 1.200 |
|
||||
| Speed | 3pcs: 550 ms/step |
|
||||
| Total time | 3pcs: 8.2 hours |
|
||||
| Speed | 3pcs: 566 ms/step |
|
||||
| Total time | 3pcs: 8.43 hours |
|
||||
| Parameters (M) | 27.29M |
|
||||
| Checkpoint for Fine tuning | 336.3M (.ckpt file) |
|
||||
| Scripts | [retinaface script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/retinaface) |
|
||||
|
|
|
@ -179,7 +179,7 @@ class DetectionEngine:
|
|||
for event in self.results:
|
||||
for name in self.results[event].keys():
|
||||
bbox = np.array(self.results[event][name]['bboxes']).astype(np.float)
|
||||
if not bool(bbox):
|
||||
if bbox.shape[0] <= 0:
|
||||
continue
|
||||
max_score = max(max_score, np.max(bbox[:, -1]))
|
||||
min_score = min(min_score, np.min(bbox[:, -1]))
|
||||
|
@ -188,7 +188,7 @@ class DetectionEngine:
|
|||
for event in self.results:
|
||||
for name in self.results[event].keys():
|
||||
bbox = np.array(self.results[event][name]['bboxes']).astype(np.float)
|
||||
if not bool(bbox):
|
||||
if bbox.shape[0] <= 0:
|
||||
continue
|
||||
bbox[:, -1] -= min_score
|
||||
bbox[:, -1] /= length
|
||||
|
@ -227,7 +227,7 @@ class DetectionEngine:
|
|||
for section in range(section_num):
|
||||
_thresh = 1 - (section + 1)/section_num
|
||||
over_score_index = np.where(predict[:, 4] >= _thresh)[0]
|
||||
if not bool(over_score_index):
|
||||
if over_score_index.shape[0] <= 0:
|
||||
image_pr[section, 0] = 0
|
||||
image_pr[section, 1] = 0
|
||||
else:
|
||||
|
@ -264,10 +264,10 @@ class DetectionEngine:
|
|||
keep_index = event_gt_index_list[j][0]
|
||||
count_gt += len(keep_index)
|
||||
|
||||
if not bool(gt_boxes) or not bool(predict):
|
||||
if gt_boxes.shape[0] <= 0 or predict.shape[0] <= 0:
|
||||
continue
|
||||
keep = np.zeros(gt_boxes.shape[0])
|
||||
if bool(keep_index):
|
||||
if keep_index.shape[0] > 0:
|
||||
keep[keep_index-1] = 1
|
||||
|
||||
image_pr = self._image_eval(predict, gt_boxes, keep,
|
||||
|
|
|
@ -55,7 +55,7 @@ def _choose_candidate(max_trial, image_w, image_h, boxes):
|
|||
dx = int(_rand(0, image_w - nw))
|
||||
dy = int(_rand(0, image_h - nh))
|
||||
|
||||
if bool(boxes):
|
||||
if boxes.shape[0] > 0:
|
||||
crop_box = np.array((dx, dy, dx + nw, dy + nh))
|
||||
if not _is_iof_satisfied_constraint(boxes, crop_box[np.newaxis]):
|
||||
continue
|
||||
|
|
|
@ -71,7 +71,7 @@ def read_dataset(img_path, annotation):
|
|||
|
||||
labels = annotation
|
||||
anns = np.zeros((0, 15))
|
||||
if not bool(labels):
|
||||
if labels.shape[0] <= 0:
|
||||
return anns
|
||||
for _, label in enumerate(labels):
|
||||
ann = np.zeros((1, 15))
|
||||
|
|
Loading…
Reference in New Issue