forked from mindspore-Ecosystem/mindspore
!37821 [feat] [assistant] [I4XJIC] Add Uniform
Merge pull request !37821 from 桂宁馨/Uniform
This commit is contained in:
commit
9775d00218
|
@ -0,0 +1,146 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/uniform_cpu_kernel.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
|
||||
#include "mindspore/core/ops/uniform.h"
|
||||
#include "kernel/common_utils.h"
|
||||
#include "utils/ms_utils.h"
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
const size_t kUniformInputsNum = 1;
|
||||
const size_t kUniformOutputsNum = 1;
|
||||
} // namespace
|
||||
|
||||
uint64_t UniformCpuKernelMod::New64() {
|
||||
std::random_device device("/dev/urandom");
|
||||
static std::mt19937_64 rng = std::mt19937_64(device());
|
||||
return (rng)();
|
||||
}
|
||||
|
||||
void UniformCpuKernelMod::InitMSPhiloxRandom(int64_t seed_, int64_t offset_) {
|
||||
if (seed_ == 0 && offset_ == 0) {
|
||||
seed_ = New64();
|
||||
offset_ = New64();
|
||||
}
|
||||
generator_ = random::MSPhiloxRandom(seed_, offset_);
|
||||
}
|
||||
|
||||
float UniformCpuKernelMod::RandFloat() {
|
||||
uint32_t x = GenerateSingle();
|
||||
const uint32_t man = x & 0x7fffffu; // 23 bit mantissa
|
||||
const uint32_t exp = static_cast<uint32_t>(127);
|
||||
const uint32_t val = (exp << 23) | man;
|
||||
|
||||
float result;
|
||||
memcpy_s(&result, sizeof(result), &val, sizeof(val));
|
||||
return result - 1.0f;
|
||||
}
|
||||
|
||||
uint32_t UniformCpuKernelMod::GenerateSingle() {
|
||||
if (used_result_index_ == random::MSPhiloxRandom::kResultElementCount) {
|
||||
unused_results_ = generator_();
|
||||
used_result_index_ = 0;
|
||||
}
|
||||
return unused_results_[used_result_index_++];
|
||||
}
|
||||
|
||||
bool UniformCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
MS_EXCEPTION_IF_NULL(base_operator);
|
||||
auto op = std::dynamic_pointer_cast<ops::Uniform>(base_operator);
|
||||
kernel_name_ = op->name();
|
||||
auto kernel_attr = GetKernelAttrFromTensors(inputs, outputs);
|
||||
auto [is_match, index] = MatchKernelAttr(kernel_attr, GetOpSupport());
|
||||
kernel_ptr_ = std::make_shared<ops::Uniform>(base_operator->GetPrim());
|
||||
if (!is_match) {
|
||||
MS_LOG(EXCEPTION) << "Uniform does not support this kernel data type: " << kernel_attr;
|
||||
}
|
||||
from_ = op->get_from();
|
||||
to_ = op->get_to();
|
||||
seed_ = op->get_seed();
|
||||
offset_ = op->get_offset();
|
||||
if (from_ > to_) {
|
||||
MS_LOG(ERROR) << "For Uniform, 'minval' must <= 'maxval', but got 'minval'=" << from_ << " ,'maxval'=" << to_;
|
||||
}
|
||||
kernel_func_ = func_list_[index].second;
|
||||
return true;
|
||||
}
|
||||
|
||||
int UniformCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &) {
|
||||
int ret = KRET_OK;
|
||||
if ((ret = NativeCpuKernelMod::Resize(base_operator, inputs, outputs)) != 0) {
|
||||
return ret;
|
||||
}
|
||||
std::vector<int64_t> input_shape = inputs.at(kIndex0)->GetShapeVector();
|
||||
std::transform(input_shape.begin(), input_shape.end(), std::back_inserter(input_shape_), LongToSize);
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool UniformCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kUniformInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kUniformOutputsNum, kernel_name_);
|
||||
|
||||
InitMSPhiloxRandom(seed_, offset_);
|
||||
|
||||
auto y = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
input_elements_ = std::accumulate(input_shape_.begin(), input_shape_.end(), int64_t(1), std::multiplies<int64_t>());
|
||||
for (int64_t i = 0; i < input_elements_; i++) {
|
||||
y[i] = static_cast<T>(RandFloat() * (to_ - from_) + from_);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<std::pair<KernelAttr, UniformCpuKernelMod::UniformFunc>> UniformCpuKernelMod::func_list_ = {
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
&UniformCpuKernelMod::LaunchKernel<float16>},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
&UniformCpuKernelMod::LaunchKernel<float>},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
&UniformCpuKernelMod::LaunchKernel<double>}};
|
||||
|
||||
std::vector<KernelAttr> UniformCpuKernelMod::GetOpSupport() {
|
||||
std::vector<KernelAttr> support_list;
|
||||
(void)std::transform(func_list_.begin(), func_list_.end(), std::back_inserter(support_list),
|
||||
[](const std::pair<KernelAttr, UniformFunc> &pair) { return pair.first; });
|
||||
return support_list;
|
||||
}
|
||||
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, Uniform, UniformCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,83 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_UNIFORM_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_UNIFORM_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <random>
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
#include "plugin/device/cpu/kernel/random_util.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class UniformCpuKernelMod : public NativeCpuKernelMod {
|
||||
public:
|
||||
UniformCpuKernelMod() = default;
|
||||
~UniformCpuKernelMod() override = default;
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override {
|
||||
return kernel_func_(this, inputs, outputs);
|
||||
}
|
||||
|
||||
std::vector<KernelAttr> GetOpSupport() override;
|
||||
|
||||
private:
|
||||
bool CheckUniformShape();
|
||||
|
||||
template <typename T>
|
||||
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
using UniformFunc = std::function<bool(UniformCpuKernelMod *, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &)>;
|
||||
|
||||
private:
|
||||
random::MSPhiloxRandom generator_;
|
||||
using ResType = random::Array<uint32_t, random::MSPhiloxRandom::kResultElementCount>;
|
||||
ResType unused_results_;
|
||||
size_t used_result_index_ = random::MSPhiloxRandom::kResultElementCount;
|
||||
|
||||
float RandFloat();
|
||||
uint64_t New64();
|
||||
void InitMSPhiloxRandom(int64_t seed, int64_t offset);
|
||||
uint32_t GenerateSingle();
|
||||
|
||||
static std::vector<std::pair<KernelAttr, UniformFunc>> func_list_;
|
||||
UniformFunc kernel_func_;
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
int64_t input_elements_;
|
||||
float from_{0.0};
|
||||
float to_{1.0};
|
||||
int64_t seed_{0};
|
||||
int64_t offset_{0};
|
||||
BaseOperatorPtr kernel_ptr_{nullptr};
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_UNIFORM_CPU_KERNEL_H_
|
|
@ -21,14 +21,20 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
void Uniform::Init(float from, float to) {
|
||||
void Uniform::Init(float from, float to, int64_t seed, int64_t offset) {
|
||||
this->set_from(from);
|
||||
this->set_to(to);
|
||||
this->set_seed(seed);
|
||||
this->set_offset(offset);
|
||||
}
|
||||
void Uniform::set_from(float from) { (void)this->AddAttr(kFrom, api::MakeValue(from)); }
|
||||
|
||||
void Uniform::set_to(float to) { (void)this->AddAttr(kTo, api::MakeValue(to)); }
|
||||
|
||||
void Uniform::set_seed(int64_t seed) { (void)this->AddAttr(kSeed, api::MakeValue(seed)); }
|
||||
|
||||
void Uniform::set_offset(int64_t offset) { (void)this->AddAttr(kOffset, api::MakeValue(offset)); }
|
||||
|
||||
float Uniform::get_from() const {
|
||||
auto value_ptr = GetAttr(kFrom);
|
||||
return GetValue<float>(value_ptr);
|
||||
|
@ -39,6 +45,16 @@ float Uniform::get_to() const {
|
|||
return GetValue<float>(value_ptr);
|
||||
}
|
||||
|
||||
int64_t Uniform::get_seed() const {
|
||||
auto value_ptr = GetAttr(kSeed);
|
||||
return GetValue<int64_t>(value_ptr);
|
||||
}
|
||||
|
||||
int64_t Uniform::get_offset() const {
|
||||
auto value_ptr = GetAttr(kOffset);
|
||||
return GetValue<int64_t>(value_ptr);
|
||||
}
|
||||
|
||||
namespace {
|
||||
abstract::ShapePtr UniformInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
|
|
|
@ -34,11 +34,15 @@ class MIND_API Uniform : public BaseOperator {
|
|||
public:
|
||||
Uniform() : BaseOperator(kNameUniform) { InitIOName({"x"}, {"y"}); }
|
||||
/// \brief Method to init the ops attributes.
|
||||
void Init(const float from, const float to);
|
||||
void Init(const float from, const float to, const int64_t seed, const int64_t offset);
|
||||
/// \brief Set from.
|
||||
void set_from(const float from);
|
||||
/// \brief Set to.
|
||||
void set_to(const float to);
|
||||
/// \brief Set seed.
|
||||
void set_seed(const int64_t seed);
|
||||
/// \brief Set offset.
|
||||
void set_offset(const int64_t offset);
|
||||
/// \brief Get from.
|
||||
///
|
||||
/// \return from.
|
||||
|
@ -47,6 +51,14 @@ class MIND_API Uniform : public BaseOperator {
|
|||
///
|
||||
/// \return to.
|
||||
float get_to() const;
|
||||
/// \brief Get seed.
|
||||
///
|
||||
/// \return seed.
|
||||
int64_t get_seed() const;
|
||||
/// \brief Get offset.
|
||||
///
|
||||
/// \return offset.
|
||||
int64_t get_offset() const;
|
||||
|
||||
MIND_API_BASE_MEMBER(Uniform);
|
||||
};
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Uniform op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
uniform_op_info = AiCPURegOp("Uniform") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.attr("from", "float") \
|
||||
.attr("to", "float") \
|
||||
.attr("seed", "int") \
|
||||
.attr("offset", "int") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(uniform_op_info)
|
||||
def _uniform_aicpu():
|
||||
"""Uniform aicpu register"""
|
||||
return
|
|
@ -5525,7 +5525,7 @@ def tril_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> net = ops.TrilIndices(4, 3, -1, mindspore.int64)
|
||||
>>> net = ops.tril_indices(4, 3, -1, mindspore.int64)
|
||||
>>> output = net()
|
||||
>>> print(output)
|
||||
[[1 2 2 3 3 3]
|
||||
|
@ -5570,7 +5570,7 @@ def triu_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> net = ops.TriuIndices(5, 4, 2, mindspore.int64)
|
||||
>>> net = ops.triu_indices(5, 4, 2, mindspore.int64)
|
||||
>>> output = net()
|
||||
>>> print(output)
|
||||
[[0 0 1]
|
||||
|
|
|
@ -1005,39 +1005,43 @@ class Uniform(Primitive):
|
|||
Generates random numbers according to the Uniform random number distribution.
|
||||
|
||||
Args:
|
||||
min_val(float):must be non-negative. Default: 0.0.
|
||||
max_val(float):must be non-negative. Default: 1.0.
|
||||
minval(float):must be non-negative. Default: 0.0.
|
||||
maxval(float):must be non-negative. Default: 1.0.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The x of random tensor to be generated.
|
||||
Only constant value is allowed, and the date type is float16, float32, float64.
|
||||
|
||||
Raises:
|
||||
TypeError: If `min_val` or `max_val` is not a float.
|
||||
TypeError: If `minval` or `maxval` is not a float.
|
||||
TypeError: If `x`is not a Tensor.
|
||||
ValueError: If `minval` is larger than `maxval`.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - With the same type and shape as the 'x'.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.random.randn(3,4), mstype.float64)
|
||||
>>> uniform = Uniform(min_val=1.0, max_val=2.0)
|
||||
>>> uniform = Uniform(minval=1.0, maxval=2.0)
|
||||
>>> y = uniform(x)
|
||||
>>> print(y.shape)
|
||||
(3, 4)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, min_val=0, max_val=1):
|
||||
def __init__(self, minval=0., maxval=1., seed=0, offset=0):
|
||||
"""Initialize Uniform"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
self.add_prim_attr("from", 0.0)
|
||||
self.add_prim_attr("to", 1.0)
|
||||
Validator.check_non_negative_float(min_val, "from", self.name)
|
||||
Validator.check_non_negative_float(max_val, "to", self.name)
|
||||
self.add_prim_attr("from", minval)
|
||||
self.add_prim_attr("to", maxval)
|
||||
Validator.check_value_type('seed', seed, [int], self.name)
|
||||
Validator.check_value_type('offset', offset, [int], self.name)
|
||||
Validator.check('minval', minval, 'maxval', maxval, Rel.LE, self.name)
|
||||
Validator.check_non_negative_float(minval, "minval", self.name)
|
||||
Validator.check_non_negative_float(maxval, "maxval", self.name)
|
||||
|
||||
|
||||
class RandpermV2(Primitive):
|
||||
|
|
|
@ -82,6 +82,7 @@ from mindspore.ops.operations.array_ops import SegmentProd
|
|||
from mindspore.ops.operations.array_ops import ScatterAddWithAxis
|
||||
from mindspore.ops.operations.array_ops import ConcatOffsetV1
|
||||
from mindspore.ops.operations.random_ops import NonDeterministicInts
|
||||
from mindspore.ops.operations.random_ops import Uniform
|
||||
from mindspore.ops.operations.random_ops import TruncatedNormal
|
||||
from mindspore.ops.operations.random_ops import MultinomialWithReplacement
|
||||
from mindspore.ops.operations.random_ops import ParameterizedTruncatedNormal
|
||||
|
@ -4310,6 +4311,10 @@ test_case_other_ops = [
|
|||
'block': NonDeterministicInts(dtype=mstype.int32),
|
||||
'desc_inputs': [Tensor(np.array([2, 2]), mstype.int32)],
|
||||
'skip': ['backward']}),
|
||||
('UniformOps', {
|
||||
'block': Uniform(minval=0., maxval=1., seed=1, offset=1),
|
||||
'desc_inputs': [Tensor(np.array([2, 2]), mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('TruncatedNormal', {
|
||||
'block': TruncatedNormal(dtype=mstype.float32, seed=1, seed2=1),
|
||||
'desc_inputs': [Tensor(np.array([2, 2]), mstype.int32)],
|
||||
|
|
Loading…
Reference in New Issue