forked from mindspore-Ecosystem/mindspore
!22553 [assistant][ops] Add new loader UDPOSDataset
Merge pull request !22553 from 杨旭华/UDPOSDataset
This commit is contained in:
commit
953920112c
|
@ -121,6 +121,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/tedlium_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/text_file_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/tf_record_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/udpos_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/usps_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/voc_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/yahoo_answers_node.h"
|
||||
|
@ -1685,6 +1686,14 @@ TFRecordDataset::TFRecordDataset(const std::vector<std::vector<char>> &dataset_f
|
|||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
UDPOSDataset::UDPOSDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto ds = std::make_shared<UDPOSNode>(CharToString(dataset_dir), CharToString(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
ir_node_ = std::static_pointer_cast<UDPOSNode>(ds);
|
||||
}
|
||||
|
||||
YahooAnswersDataset::YahooAnswersDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
int64_t num_samples, ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
|
|
|
@ -51,6 +51,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/stl10_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/tedlium_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/text_file_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/udpos_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/yahoo_answers_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/yelp_review_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/yes_no_node.h"
|
||||
|
@ -528,6 +529,18 @@ PYBIND_REGISTER(TFRecordNode, 2, ([](const py::module *m) {
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(UDPOSNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<UDPOSNode, DatasetNode, std::shared_ptr<UDPOSNode>>(*m, "UDPOSNode",
|
||||
"to create an UDPOSNode")
|
||||
.def(py::init([](std::string dataset_dir, std::string usage, int64_t num_samples, int32_t shuffle,
|
||||
int32_t num_shards, int32_t shard_id) {
|
||||
std::shared_ptr<UDPOSNode> udpos = std::make_shared<UDPOSNode>(
|
||||
dataset_dir, usage, num_samples, toShuffleMode(shuffle), num_shards, shard_id, nullptr);
|
||||
THROW_IF_ERROR(udpos->ValidateParams());
|
||||
return udpos;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(USPSNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<USPSNode, DatasetNode, std::shared_ptr<USPSNode>>(*m, "USPSNode",
|
||||
"to create an USPSNode")
|
||||
|
|
|
@ -36,6 +36,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
stl10_op.cc
|
||||
tedlium_op.cc
|
||||
text_file_op.cc
|
||||
udpos_op.cc
|
||||
usps_op.cc
|
||||
yahoo_answers_op.cc
|
||||
yelp_review_op.cc
|
||||
|
|
|
@ -0,0 +1,170 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/udpos_op.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/io_block.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
#include "minddata/dataset/util/wait_post.h"
|
||||
#include "utils/file_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
UDPOSOp::UDPOSOp(int32_t num_workers, int64_t total_rows, int32_t worker_connector_size,
|
||||
std::unique_ptr<DataSchema> schema, const std::vector<std::string> &udpos_files_list,
|
||||
int32_t op_connector_size, bool shuffle_files, int32_t num_devices, int32_t device_id)
|
||||
: TextFileOp(num_workers, total_rows, worker_connector_size, std::move(schema), udpos_files_list, op_connector_size,
|
||||
shuffle_files, num_devices, device_id) {}
|
||||
|
||||
// A print method typically used for debugging.
|
||||
void UDPOSOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info.
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal 1-liner info for this op.
|
||||
out << "\n";
|
||||
} else {
|
||||
// Call the super class for displaying any common detailed info.
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal stuff.
|
||||
out << "\nRow count: " << total_rows_ << "\nDevice id: " << device_id_ << "\nNumber of devices: " << num_devices_
|
||||
<< "\nShuffle files: " << ((shuffle_files_) ? "yes" : "no") << "\nUDPOS files list:\n";
|
||||
for (size_t i = 0; i < text_files_list_.size(); ++i) {
|
||||
out << " " << text_files_list_[i];
|
||||
}
|
||||
out << "\nData Schema:\n";
|
||||
out << *data_schema_ << "\n\n";
|
||||
}
|
||||
}
|
||||
|
||||
Status UDPOSOp::LoadTensor(const std::vector<std::string> &column, TensorRow *out_row, size_t index) {
|
||||
std::shared_ptr<Tensor> tensor;
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromVector(column, &tensor));
|
||||
(*out_row)[index] = std::move(tensor);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Function to split string based on a character delimiter.
|
||||
std::vector<std::string> UDPOSOp::Split(const std::string &s, char delim) {
|
||||
std::vector<std::string> res;
|
||||
std::stringstream ss(s);
|
||||
std::string item;
|
||||
|
||||
while (getline(ss, item, delim)) {
|
||||
res.push_back(item);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Removes excess space before and after the string.
|
||||
std::string UDPOSOp::Strip(const std::string &str) {
|
||||
size_t strlen = str.size();
|
||||
size_t i, j;
|
||||
i = 0;
|
||||
while (i < strlen && str[i] == ' ') {
|
||||
i++;
|
||||
}
|
||||
j = strlen - 1;
|
||||
while (j >= i && str[j] == ' ') {
|
||||
j--;
|
||||
}
|
||||
j++;
|
||||
if (i == 0 && j == strlen) {
|
||||
return str;
|
||||
} else {
|
||||
return str.substr(i, j - i);
|
||||
}
|
||||
}
|
||||
|
||||
Status UDPOSOp::Load(const std::vector<std::string> &word, const std::vector<std::string> &universal,
|
||||
const std::vector<std::string> &stanford, const std::string &file, int32_t worker_id) {
|
||||
size_t row_line = 3;
|
||||
size_t word_line = 0, universal_line = 1, stanford_line = 2;
|
||||
TensorRow tRow(row_line, nullptr);
|
||||
// Add file path info.
|
||||
std::vector<std::string> file_path(row_line, file);
|
||||
tRow.setPath(file_path);
|
||||
RETURN_IF_NOT_OK(LoadTensor(word, &tRow, word_line));
|
||||
RETURN_IF_NOT_OK(LoadTensor(universal, &tRow, universal_line));
|
||||
RETURN_IF_NOT_OK(LoadTensor(stanford, &tRow, stanford_line));
|
||||
RETURN_IF_NOT_OK(jagged_rows_connector_->Add(worker_id, std::move(tRow)));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status UDPOSOp::LoadFile(const std::string &file, int64_t start_offset, int64_t end_offset, int32_t worker_id) {
|
||||
auto realpath = FileUtils::GetRealPath(file.data());
|
||||
if (!realpath.has_value()) {
|
||||
MS_LOG(ERROR) << "Invalid file path, " + DatasetName() + " dataset dir: " << file << " does not exist.";
|
||||
RETURN_STATUS_UNEXPECTED("Invalid file path, " + DatasetName() + " dataset dir: " + file + " does not exist.");
|
||||
}
|
||||
std::ifstream handle(realpath.value());
|
||||
if (!handle.is_open()) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid file, failed to open " + DatasetName() + ": " + file);
|
||||
}
|
||||
int64_t rows_total = 0;
|
||||
std::string line;
|
||||
std::vector<std::string> word_column;
|
||||
std::vector<std::string> universal_column;
|
||||
std::vector<std::string> stanford_column;
|
||||
while (getline(handle, line)) {
|
||||
if (line.empty() && rows_total < start_offset) {
|
||||
continue;
|
||||
}
|
||||
// If read to the end offset of this file, break.
|
||||
if (rows_total >= end_offset) {
|
||||
if (word_column.size() != 0) {
|
||||
RETURN_IF_NOT_OK(Load(word_column, universal_column, stanford_column, file, worker_id));
|
||||
}
|
||||
std::vector<std::string>().swap(word_column);
|
||||
std::vector<std::string>().swap(universal_column);
|
||||
std::vector<std::string>().swap(stanford_column);
|
||||
break;
|
||||
}
|
||||
// Skip line before start offset.
|
||||
if (rows_total < start_offset) {
|
||||
rows_total++;
|
||||
continue;
|
||||
}
|
||||
line = Strip(line);
|
||||
if (line.empty() && rows_total >= start_offset) {
|
||||
if (word_column.size() != 0) {
|
||||
RETURN_IF_NOT_OK(Load(word_column, universal_column, stanford_column, file, worker_id));
|
||||
}
|
||||
std::vector<std::string>().swap(word_column);
|
||||
std::vector<std::string>().swap(universal_column);
|
||||
std::vector<std::string>().swap(stanford_column);
|
||||
continue;
|
||||
} else if (!line.empty() && rows_total >= start_offset) {
|
||||
std::vector<std::string> column = Split(line, '\t');
|
||||
size_t word_line = 0, universal_line = 1, stanford_line = 2;
|
||||
word_column.push_back(column[word_line]);
|
||||
universal_column.push_back(column[universal_line]);
|
||||
stanford_column.push_back(column[stanford_line]);
|
||||
}
|
||||
rows_total++;
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,96 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_UDPOS_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_UDPOS_OP_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/text_file_op.h"
|
||||
#include "minddata/dataset/util/queue.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class JaggedConnector;
|
||||
|
||||
class UDPOSOp : public TextFileOp {
|
||||
public:
|
||||
/// \Constructor of UDPOSOp.
|
||||
UDPOSOp(int32_t num_workers, int64_t total_rows, int32_t worker_connector_size, std::unique_ptr<DataSchema>,
|
||||
const std::vector<std::string> &udpos_files_list, int32_t op_connector_size, bool shuffle_files,
|
||||
int32_t num_devices, int32_t device_id);
|
||||
|
||||
/// \Default destructor.
|
||||
~UDPOSOp() = default;
|
||||
|
||||
/// \brief A print method typically used for debugging.
|
||||
/// \param[in] out The output stream to write output to.
|
||||
/// \param[in] show_all A bool to control if you want to show all info or just a summary.
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
/// \brief Op name getter.
|
||||
/// \return Name of the current Op.
|
||||
std::string Name() const override { return "UDPOSOp"; }
|
||||
|
||||
// DatasetName name getter
|
||||
/// \param[in] upper Needs to be capitalized or not
|
||||
// \return DatasetName of the current Op
|
||||
std::string DatasetName(bool upper = false) const { return upper ? "UDPOS" : "udpos"; }
|
||||
|
||||
private:
|
||||
/// \brief Parses a single row and puts the data into multiple TensorRows.
|
||||
/// \param[in] column The content of the column.
|
||||
/// \param[in] out_row The tensor table to put the parsed data in.
|
||||
/// \param[in] index Serial number of column.
|
||||
/// \return Status The error code returned.
|
||||
Status LoadTensor(const std::vector<std::string> &column, TensorRow *out_row, size_t index);
|
||||
|
||||
/// \brief Removes excess space before and after the string.
|
||||
/// \param[in] str The input string.
|
||||
/// \return A string.
|
||||
std::string Strip(const std::string &str);
|
||||
|
||||
/// \brief Split string based on a character delimiter.
|
||||
/// \param[in] s The input string.
|
||||
/// \param[in] delim Symbols for separating string.
|
||||
/// \return A string vector.
|
||||
std::vector<std::string> Split(const std::string &s, char delim);
|
||||
|
||||
/// \brief Specify that the corresponding data is translated into Tensor.
|
||||
/// \param[in] word A list of words in a sentence.
|
||||
/// \param[in] universal General part of speech.
|
||||
/// \param[in] stanford Stanford part of speech.
|
||||
/// \param[in] file The file to read.
|
||||
/// \param[in] worker_id The id of the worker that is executing this function.
|
||||
/// \return Status The error code returned.
|
||||
Status Load(const std::vector<std::string> &word, const std::vector<std::string> &universal,
|
||||
const std::vector<std::string> &stanford, const std::string &file, int32_t worker_id);
|
||||
|
||||
/// \brief Reads a text file and loads the data into multiple TensorRows.
|
||||
/// \param file The file to read.
|
||||
/// \param start_offset The start offset of file.
|
||||
/// \param end_offset The end offset of file.
|
||||
/// \param worker_id The id of the worker that is executing this function.
|
||||
/// \return Status The error code returned.
|
||||
Status LoadFile(const std::string &file, int64_t start_offset, int64_t end_offset, int32_t worker_id) override;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_UDPOS_OP_H_
|
|
@ -112,6 +112,7 @@ constexpr char kSTL10Node[] = "STL10Dataset";
|
|||
constexpr char kTedliumNode[] = "TedliumDataset";
|
||||
constexpr char kTextFileNode[] = "TextFileDataset";
|
||||
constexpr char kTFRecordNode[] = "TFRecordDataset";
|
||||
constexpr char kUDPOSNode[] = "UDPOSDataset";
|
||||
constexpr char kUSPSNode[] = "USPSDataset";
|
||||
constexpr char kVOCNode[] = "VOCDataset";
|
||||
constexpr char kYahooAnswersNode[] = "YahooAnswersDataset";
|
||||
|
|
|
@ -38,6 +38,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
|
|||
tedlium_node.cc
|
||||
text_file_node.cc
|
||||
tf_record_node.cc
|
||||
udpos_node.cc
|
||||
usps_node.cc
|
||||
voc_node.cc
|
||||
yahoo_answers_node.cc
|
||||
|
|
|
@ -0,0 +1,196 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/udpos_node.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/udpos_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor for UDPOSNode.
|
||||
UDPOSNode::UDPOSNode(const std::string &dataset_dir, const std::string &usage, int32_t num_samples, ShuffleMode shuffle,
|
||||
int32_t num_shards, int32_t shard_id, std::shared_ptr<DatasetCache> cache)
|
||||
: NonMappableSourceNode(std::move(cache)),
|
||||
dataset_dir_(dataset_dir),
|
||||
usage_(usage),
|
||||
num_samples_(num_samples),
|
||||
shuffle_(shuffle),
|
||||
num_shards_(num_shards),
|
||||
shard_id_(shard_id),
|
||||
udpos_files_list_(WalkAllFiles(usage, dataset_dir)) {
|
||||
// Update the num_shards_ in global context. this number is only used for now by auto_num_worker_pass. User discretion
|
||||
// is advised. Auto_num_worker_pass is currently an experimental feature which can still work if the num_shards_ isn't
|
||||
// 100% correct. The reason behind is for now, PreBuildSampler doesn't offer a way to return num_shards. Once
|
||||
// PreBuildSampler is phased out, this can be cleaned up.
|
||||
GlobalContext::config_manager()->set_num_shards_for_auto_num_workers(num_shards_);
|
||||
}
|
||||
|
||||
std::shared_ptr<DatasetNode> UDPOSNode::Copy() {
|
||||
auto node = std::make_shared<UDPOSNode>(dataset_dir_, usage_, num_samples_, shuffle_, num_shards_, shard_id_, cache_);
|
||||
return node;
|
||||
}
|
||||
|
||||
void UDPOSNode::Print(std::ostream &out) const {
|
||||
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") +
|
||||
", num_shards: " + std::to_string(num_shards_) + ", shard_id: " + std::to_string(shard_id_) + ")");
|
||||
}
|
||||
|
||||
Status UDPOSNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
RETURN_IF_NOT_OK(ValidateDatasetDirParam("UDPOSNode", dataset_dir_));
|
||||
RETURN_IF_NOT_OK(ValidateStringValue("UDPOSNode", usage_, {"train", "test", "valid", "all"}));
|
||||
RETURN_IF_NOT_OK(ValidateScalar("UDPOSNode", "num_samples", num_samples_, {0}, false));
|
||||
RETURN_IF_NOT_OK(ValidateDatasetShardParams("UDPOSNode", num_shards_, shard_id_));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Function to build UDPOSNode.
|
||||
Status UDPOSNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
|
||||
// Sort the dataset files in a lexicographical order.
|
||||
std::vector<std::string> sorted_dataset_files = udpos_files_list_;
|
||||
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
|
||||
|
||||
// Do internal Schema generation.
|
||||
auto schema = std::make_unique<DataSchema>();
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("word", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
|
||||
TensorShape scalar = TensorShape::CreateScalar();
|
||||
RETURN_IF_NOT_OK(
|
||||
schema->AddColumn(ColDescriptor("universal", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
|
||||
RETURN_IF_NOT_OK(
|
||||
schema->AddColumn(ColDescriptor("stanford", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
|
||||
|
||||
// Create and initialize UDPOSOp.
|
||||
std::shared_ptr<UDPOSOp> udpos_op =
|
||||
std::make_shared<UDPOSOp>(num_workers_, num_samples_, worker_connector_size_, std::move(schema),
|
||||
sorted_dataset_files, connector_que_size_, shuffle_files, num_shards_, shard_id_);
|
||||
RETURN_IF_NOT_OK(udpos_op->Init());
|
||||
|
||||
// If a global shuffle is used for UDPOS, it will inject a shuffle op over the UDPOS.
|
||||
// But, if there is a cache in the tree, we do not need the global shuffle and the shuffle op should not be built.
|
||||
// This is achieved in the cache transform pass where we call MakeSimpleProducer to reset UDPOS's shuffle
|
||||
// option to false.
|
||||
if (shuffle_ == ShuffleMode::kGlobal) {
|
||||
// Inject ShuffleOp.
|
||||
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
|
||||
int64_t num_rows = 0;
|
||||
|
||||
// First, get the number of rows in the dataset.
|
||||
RETURN_IF_NOT_OK(UDPOSOp::CountAllFileRows(sorted_dataset_files, &num_rows));
|
||||
|
||||
// Add the shuffle op after this op.
|
||||
RETURN_IF_NOT_OK(
|
||||
AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_, &shuffle_op));
|
||||
shuffle_op->SetTotalRepeats(GetTotalRepeats());
|
||||
shuffle_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
node_ops->push_back(shuffle_op);
|
||||
}
|
||||
udpos_op->SetTotalRepeats(GetTotalRepeats());
|
||||
udpos_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
// Add UDPOSOp.
|
||||
node_ops->push_back(udpos_op);
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get the shard id of node.
|
||||
Status UDPOSNode::GetShardId(int32_t *shard_id) {
|
||||
*shard_id = shard_id_;
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get Dataset size.
|
||||
Status UDPOSNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) {
|
||||
if (dataset_size_ > 0) {
|
||||
*dataset_size = dataset_size_;
|
||||
return Status::OK();
|
||||
}
|
||||
int64_t num_rows, sample_size = num_samples_;
|
||||
RETURN_IF_NOT_OK(UDPOSOp::CountAllFileRows(udpos_files_list_, &num_rows));
|
||||
num_rows = static_cast<int64_t>(ceil(num_rows / (1.0 * num_shards_)));
|
||||
*dataset_size = sample_size > 0 ? std::min(num_rows, sample_size) : num_rows;
|
||||
dataset_size_ = *dataset_size;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status UDPOSNode::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["num_parallel_workers"] = num_workers_;
|
||||
args["dataset_dir"] = dataset_dir_;
|
||||
args["usage"] = usage_;
|
||||
args["num_samples"] = num_samples_;
|
||||
args["shuffle"] = shuffle_;
|
||||
args["num_shards"] = num_shards_;
|
||||
args["shard_id"] = shard_id_;
|
||||
if (cache_ != nullptr) {
|
||||
nlohmann::json cache_args;
|
||||
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
|
||||
args["cache"] = cache_args;
|
||||
}
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Note: The following two functions are common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
// UDPOS by itself is a non-mappable dataset that does not support sampling.
|
||||
// However, if a cache operator is injected at some other place higher in the tree, that cache can
|
||||
// inherit this sampler from the leaf, providing sampling support from the caching layer.
|
||||
// That is why we setup the sampler for a leaf node that does not use sampling.
|
||||
Status UDPOSNode::SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
*sampler = SelectSampler(num_samples_, shuffle_files, num_shards_, shard_id_);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// If a cache has been added into the ascendant tree over this UDPOS node, then the cache will be executing
|
||||
// a sampler for fetching the data. As such, any options in the UDPOS node need to be reset to its defaults so
|
||||
// that this UDPOS node will produce the full set of data into the cache.
|
||||
Status UDPOSNode::MakeSimpleProducer() {
|
||||
shard_id_ = 0;
|
||||
num_shards_ = 1;
|
||||
shuffle_ = ShuffleMode::kFalse;
|
||||
num_samples_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
std::vector<std::string> UDPOSNode::WalkAllFiles(const std::string &usage, const std::string &dataset_dir) {
|
||||
std::vector<std::string> udpos_files_list;
|
||||
const std::string train_prefix = "en-ud-tag.v2.train.txt";
|
||||
const std::string test_prefix = "en-ud-tag.v2.test.txt";
|
||||
const std::string valid_prefix = "en-ud-tag.v2.dev.txt";
|
||||
|
||||
if (usage == "train") {
|
||||
udpos_files_list.push_back(dataset_dir + train_prefix);
|
||||
} else if (usage == "test") {
|
||||
udpos_files_list.push_back(dataset_dir + test_prefix);
|
||||
} else if (usage == "valid") {
|
||||
udpos_files_list.push_back(dataset_dir + valid_prefix);
|
||||
} else {
|
||||
udpos_files_list.push_back(dataset_dir + train_prefix);
|
||||
udpos_files_list.push_back(dataset_dir + test_prefix);
|
||||
udpos_files_list.push_back(dataset_dir + valid_prefix);
|
||||
}
|
||||
return udpos_files_list;
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,120 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_UDPOS_NODE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_UDPOS_NODE_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \class UDPOSNode.
|
||||
/// \brief A Dataset derived class to represent UDPOS dataset.
|
||||
class UDPOSNode : public NonMappableSourceNode {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
UDPOSNode(const std::string &dataset_dir, const std::string &usage, int32_t num_samples, ShuffleMode shuffle,
|
||||
int32_t num_shards, int32_t shard_id, std::shared_ptr<DatasetCache> cache);
|
||||
|
||||
/// \brief Destructor.
|
||||
~UDPOSNode() = default;
|
||||
|
||||
/// \brief Node name getter.
|
||||
/// \return Name of the current node.
|
||||
std::string Name() const override { return "UDPOSNode"; }
|
||||
|
||||
/// \brief Print the description.
|
||||
/// \param[out] out The output stream to write output to.
|
||||
void Print(std::ostream &out) const override;
|
||||
|
||||
/// \brief Copy the node to a new object.
|
||||
/// \return A shared pointer to the new copy.
|
||||
std::shared_ptr<DatasetNode> Copy() override;
|
||||
|
||||
/// \brief A base class override function to create the required runtime dataset op objects for this class.
|
||||
/// \param[in] node_ops A vector containing shared pointer to the Dataset Ops that this object will create.
|
||||
/// \return Status Status::OK() if build successfully.
|
||||
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
|
||||
|
||||
/// \brief Parameters validation.
|
||||
/// \return Status Status::OK() if all the parameters are valid.
|
||||
Status ValidateParams() override;
|
||||
|
||||
/// \brief Get the shard id of node.
|
||||
/// \param[in] shard_id The shard id.
|
||||
/// \return Status Status::OK() if get shard id successfully.
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize.
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter.
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \param[out] dataset_size The size of the dataset.
|
||||
/// \return Status of the function.
|
||||
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) override;
|
||||
|
||||
/// \brief Getter functions.
|
||||
const std::string &DatasetDir() const { return dataset_dir_; }
|
||||
const std::string &Usage() const { return usage_; }
|
||||
int32_t NumSamples() const { return num_samples_; }
|
||||
int32_t NumShards() const { return num_shards_; }
|
||||
int32_t ShardId() const { return shard_id_; }
|
||||
ShuffleMode Shuffle() const { return shuffle_; }
|
||||
|
||||
/// \brief Get the arguments of node.
|
||||
/// \param[out] out_json JSON string of all attributes.
|
||||
/// \return Status of the function.
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
/// \brief UDPOS by itself is a non-mappable dataset that does not support sampling.
|
||||
/// However, if a cache operator is injected at some other place higher in the tree, that cache can
|
||||
/// inherit this sampler from the leaf, providing sampling support from the caching layer.
|
||||
/// That is why we setup the sampler for a leaf node that does not use sampling.
|
||||
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
/// \param[in] sampler The sampler to setup.
|
||||
/// \return Status of the function.
|
||||
Status SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) override;
|
||||
|
||||
/// \brief If a cache has been added into the ascendant tree over this UDPOS node, then the cache will be executing
|
||||
/// a sampler for fetching the data. As such, any options in the UDPOS node need to be reset to its defaults
|
||||
/// so that this UDPOS node will produce the full set of data into the cache.
|
||||
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
/// \return Status of the function.
|
||||
Status MakeSimpleProducer() override;
|
||||
|
||||
/// \Read all files in the directory.
|
||||
/// \param[in] usage Part of dataset of UDPOS.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \return Status The status code returned.
|
||||
std::vector<std::string> WalkAllFiles(const std::string &usage, const std::string &dataset_dir);
|
||||
|
||||
private:
|
||||
std::string dataset_dir_;
|
||||
std::string usage_;
|
||||
int32_t num_samples_;
|
||||
int32_t num_shards_;
|
||||
int32_t shard_id_;
|
||||
ShuffleMode shuffle_;
|
||||
std::vector<std::string> udpos_files_list_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_UDPOS_NODE_H_
|
|
@ -4280,6 +4280,68 @@ std::shared_ptr<TFRecordDataset> MS_API TFRecord(const std::vector<std::string>
|
|||
return ds;
|
||||
}
|
||||
|
||||
/// \class UDPOSDataset
|
||||
/// \brief A source dataset for reading and parsing UDPOS dataset.
|
||||
class MS_API UDPOSDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Constructor of UDPOS Dataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage The type of data list txt file to be read, can be "train", "test", 'valid' or "all".
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset.
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch.
|
||||
/// Can be any of:
|
||||
/// ShuffleMode.kFalse - No shuffling is performed.
|
||||
/// ShuffleMode.kFiles - Shuffle files only.
|
||||
/// ShuffleMode.kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into.
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
UDPOSDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id, const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor of UDPOSDataset.
|
||||
~UDPOSDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a UDPOSDataset.
|
||||
/// \note The generated dataset has three column ['word','universal','stanford'].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Part of dataset of UDPOS, can be "train", "test", "valid" or "all" (default="all").
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset
|
||||
/// (Default = 0, means all samples).
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch. (Default=ShuffleMode.kGlobal)
|
||||
/// Can be any of:
|
||||
/// ShuffleMode::kFalse - No shuffling is performed.
|
||||
/// ShuffleMode::kFiles - Shuffle files only.
|
||||
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into (Default = 1).
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified (Default = 0).
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the UDPOSDataset.
|
||||
/// \par Example
|
||||
/// \code
|
||||
/// /* Define dataset path and MindData object */
|
||||
/// std::string folder_path = "/path/to/udpos_dataset_directory";
|
||||
/// std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "test", 0, ShuffleMode::kGlobal);
|
||||
///
|
||||
/// /* Create iterator to read dataset */
|
||||
/// std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
/// std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
/// iter->GetNextRow(&row);
|
||||
///
|
||||
/// /* Note: In UDPOS dataset, each dictionary has keys "word", "universal", "stanford" */
|
||||
/// auto word = row["word"];
|
||||
/// \endcode
|
||||
inline std::shared_ptr<UDPOSDataset> MS_API UDPOS(const std::string &dataset_dir, const std::string &usage = "all",
|
||||
int64_t num_samples = 0, ShuffleMode shuffle = ShuffleMode::kGlobal,
|
||||
int32_t num_shards = 1, int32_t shard_id = 0,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<UDPOSDataset>(StringToChar(dataset_dir), StringToChar(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
}
|
||||
|
||||
/// \class USPSDataset
|
||||
/// \brief A source dataset that reads and parses USPS datasets.
|
||||
class MS_API USPSDataset : public Dataset {
|
||||
|
|
|
@ -72,7 +72,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
|
|||
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset, check_lj_speech_dataset, \
|
||||
check_yes_no_dataset, check_speech_commands_dataset, check_tedlium_dataset, check_svhn_dataset, \
|
||||
check_stl10_dataset, check_yelp_review_dataset, check_penn_treebank_dataset, check_iwslt2016_dataset, \
|
||||
check_iwslt2017_dataset, check_sogou_news_dataset, check_yahoo_answers_dataset
|
||||
check_iwslt2017_dataset, check_sogou_news_dataset, check_yahoo_answers_dataset, check_udpos_dataset
|
||||
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
|
||||
get_prefetch_size, get_auto_offload
|
||||
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
|
||||
|
@ -6176,6 +6176,64 @@ class Schema:
|
|||
return schema_obj.cpp_schema.get_num_rows()
|
||||
|
||||
|
||||
class UDPOSDataset(SourceDataset):
|
||||
"""
|
||||
A source dataset that reads and parses UDPOS dataset.
|
||||
|
||||
The generated dataset has three columns: :py:obj:`[word, universal, stanford]`.
|
||||
The tensor of column :py:obj:`word` is of the string type.
|
||||
The tensor of column :py:obj:`universal` is of the string type.
|
||||
The tensor of column :py:obj:`stanford` is of the string type.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
usage (str, optional): Usage of this dataset, can be `train`, `test`, `valid` or `all`. `train` will read from
|
||||
12,543 train samples, `test` will read from 2,077 test samples, `valid` will read from 2,002 test samples,
|
||||
`all` will read from all 16,622 samples (default=None, all samples).
|
||||
num_samples (int, optional): Number of samples (rows) to read (default=None, reads the full dataset).
|
||||
shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
||||
- Shuffle.GLOBAL: Shuffle both the files and samples.
|
||||
|
||||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the max sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
Raises:
|
||||
RuntimeError: If dataset_dir does not contain data files.
|
||||
RuntimeError: If num_parallel_workers exceeds the max thread numbers.
|
||||
RuntimeError: If num_shards is specified but shard_id is None.
|
||||
RuntimeError: If shard_id is specified but num_shards is None.
|
||||
|
||||
Examples:
|
||||
>>> udpos_dataset_dir = "/path/to/udpos_dataset_dir"
|
||||
>>> dataset = ds.UDPOSDataset(dataset_files=udpos_dataset_dir, usage='all')
|
||||
"""
|
||||
|
||||
@check_udpos_dataset
|
||||
def __init__(self, dataset_dir, usage=None, num_samples=None, shuffle=Shuffle.GLOBAL, num_shards=None,
|
||||
shard_id=None, num_parallel_workers=None, cache=None):
|
||||
super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle,
|
||||
num_shards=num_shards, shard_id=shard_id, cache=cache)
|
||||
self.dataset_dir = dataset_dir
|
||||
self.usage = replace_none(usage, 'all')
|
||||
|
||||
def parse(self, children=None):
|
||||
return cde.UDPOSNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards,
|
||||
self.shard_id)
|
||||
|
||||
|
||||
class USPSDataset(SourceDataset):
|
||||
"""
|
||||
A source dataset for reading and parsing the USPS dataset.
|
||||
|
|
|
@ -404,6 +404,35 @@ def check_tfrecorddataset(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_udpos_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(UDPOSDataset)."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
_, param_dict = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
|
||||
|
||||
# check dataset_dir; required argument
|
||||
dataset_dir = param_dict.get('dataset_dir')
|
||||
check_dir(dataset_dir)
|
||||
|
||||
# check usage
|
||||
usage = param_dict.get('usage')
|
||||
if usage is not None:
|
||||
check_valid_str(usage, ["train", "valid", "test", "all"], "usage")
|
||||
|
||||
validate_dataset_param_value(nreq_param_int, param_dict, int)
|
||||
check_sampler_shuffle_shard_options(param_dict)
|
||||
|
||||
cache = param_dict.get('cache')
|
||||
check_cache_option(cache)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_usps_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(USPSDataset)."""
|
||||
|
||||
|
|
|
@ -48,6 +48,7 @@ SET(DE_UT_SRCS
|
|||
c_api_dataset_tedlium_test.cc
|
||||
c_api_dataset_textfile_test.cc
|
||||
c_api_dataset_tfrecord_test.cc
|
||||
c_api_dataset_udpos_test.cc
|
||||
c_api_dataset_usps_test.cc
|
||||
c_api_dataset_voc_test.cc
|
||||
c_api_dataset_yahoo_answers_test.cc
|
||||
|
|
|
@ -0,0 +1,574 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/common.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/include/dataset/datasets.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
|
||||
using mindspore::dataset::ShuffleMode;
|
||||
|
||||
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
||||
protected:
|
||||
};
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: read data from a single file.
|
||||
/// Expectation: three data in one file.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetBasic) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetBasic.";
|
||||
// Test UDPOS Dataset with single UDPOS file and many default inputs.
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
// Create a UDPOS Dataset, with single UDPOS file.
|
||||
// Note: en-ud-tag.v2.valid.txt has 3 rows.
|
||||
// Use 2 samples.
|
||||
// Use defaults for other input parameters.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "valid", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"From", "Abed", "Ido"}, {"Psg", "Psg", "Nine"}, {"Bus", "Psg", "Nine"}};
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto word = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {{}}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
EXPECT_EQ(i, 3);
|
||||
// Expect 3 samples.
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: repeat read data.
|
||||
/// Expectation: five times the read-in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetBasicWithPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetBasicWithPipeline.";
|
||||
// Test UDPOS Dataset with single UDPOS file and many default inputs.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
// Create two UDPOSDataset, with single UDPOS file.
|
||||
// Note: en-ud-tag.v2.test.txt has 3 rows.
|
||||
// Use 2 samples.
|
||||
// Use defaults for other input parameters.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds1 = UDPOS(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
std::shared_ptr<Dataset> ds2 = UDPOS(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Repeat operation on ds.
|
||||
int32_t repeat_num = 2;
|
||||
ds1 = ds1->Repeat(repeat_num);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
repeat_num = 3;
|
||||
ds2 = ds2->Repeat(repeat_num);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create a Concat operation on the ds.
|
||||
ds1 = ds1->Concat({ds2});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {{"What", "Psg", "What"}};
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto word = row["word"];
|
||||
MS_LOG(INFO) << "Tensor word shape: " << word.Shape();
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 5 samples.
|
||||
EXPECT_EQ(i, 5);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: Includes tests for shape, type, size.
|
||||
/// Expectation: correct shape, type, size.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSGetters) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSGetters.";
|
||||
// Test UDPOS Dataset with single UDPOS file and many default inputs.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(987);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
// Create a UDPOS Dataset, with single UDPOS file.
|
||||
// Note: en-ud-tag.v2.test.txt has 1 rows.
|
||||
// Use 2 samples.
|
||||
// Use defaults for other input parameters.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "train", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
|
||||
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
|
||||
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
|
||||
|
||||
EXPECT_EQ(types.size(), 3);
|
||||
EXPECT_EQ(types[0].ToString(), "string");
|
||||
EXPECT_EQ(types[1].ToString(), "string");
|
||||
EXPECT_EQ(types[2].ToString(), "string");
|
||||
EXPECT_EQ(shapes.size(), 3);
|
||||
EXPECT_EQ(shapes[0].ToString(), "<6>");
|
||||
EXPECT_EQ(shapes[1].ToString(), "<6>");
|
||||
EXPECT_EQ(shapes[2].ToString(), "<6>");
|
||||
EXPECT_EQ(ds->GetBatchSize(), 1);
|
||||
EXPECT_EQ(ds->GetRepeatCount(), 1);
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 2);
|
||||
EXPECT_EQ(ds->GetColumnNames(), column_names);
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with samplers=-1.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidSamplers) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidSamplers.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With invalid samplers=-1.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "test", -1, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: UDPOS number of samples cannot be negative.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with wrongful empty dataset_files.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidFilePath) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidFilePath.";
|
||||
|
||||
// Attempt to create a UDPOS Dataset.
|
||||
// With wrongful empty dataset_files input.
|
||||
std::shared_ptr<Dataset> ds = UDPOS("NotExistFile", "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: dataset_files is not specified.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with non-existent dataset_files.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidFileName) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidFileName.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With non-existent dataset_files input.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "dev", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: specified dataset_files does not exist.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with empty string dataset_files.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetEmptyFilePath) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetEmptyFilePath.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With empty string dataset_files input.
|
||||
std::shared_ptr<Dataset> ds = UDPOS("", "dev", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: specified dataset_files does not exist
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with invalid num_shards=0 value.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidNumShards) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidNumShards.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With invalid num_shards=0 value.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "test", 0, ShuffleMode::kFalse, 0);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: Number of shards cannot be <=0.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with invalid shard_id=-1 value.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidShardId) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidShardId.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With invalid shard_id=-1 value.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "dev", 0, ShuffleMode::kFalse, -1);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: shard_id cannot be negative.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: test with invalid shard_id=2 and num_shards=2 combination.
|
||||
/// Expectation: unable to read in data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetInvalidIdAndShards) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetInvalidIdAndShards.";
|
||||
|
||||
// Create a UDPOS Dataset.
|
||||
// With invalid shard_id=2 and num_shards=2 combination.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "dev", 0, ShuffleMode::kFalse, 2, 2);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: Cannot have shard_id >= num_shards.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: read all data with no shuffle, num_parallel_workers=1.
|
||||
/// Expectation: return correct data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetShuffleFalse) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetShuffleFalse.";
|
||||
// Test UDPOS Dataset with three UDPOS files and no shuffle, num_parallel_workers=1.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(654);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(1);
|
||||
|
||||
// Create a UDPOS Dataset, with three UDPOS files, en-ud-tag.v2.valid.txt ,
|
||||
// en-ud-tag.v2.test.txt and en-ud-tag.v2.train.txt, in lexicographical order.
|
||||
// Note: en-ud-tag.v2.valid.txt has 3 rows.
|
||||
// Note: en-ud-tag.v2.test.txt has 1 rows.
|
||||
// Note: en-ud-tag.v2.train.txt has 2 rows.
|
||||
// Use default of all samples.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "all", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {{"From", "Abed", "Ido"}, {"Psg", "Psg", "Nine"},
|
||||
{"Bus", "Psg", "Nine"}, {"What", "Psg", "What"},
|
||||
{"Abed", "Psg", "Nine"}, {"...", "Psg", "---"}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto word = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {{}}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 3 + 1 + 2 = 6 samples.
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: read all data with files shuffle, num_parallel_workers=1.
|
||||
/// Expectation: return correct data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetShuffleFilesA) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetShuffleFilesA.";
|
||||
// Test TUDPOS Dataset with files shuffle, num_parallel_workers=1.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(135);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(1);
|
||||
|
||||
// Create a UDPOS Dataset, with three UDPOS files, en-ud-tag.v2.valid.txt ,
|
||||
// en-ud-tag.v2.test.txt and en-ud-tag.v2.train.txt, in lexicographical order.
|
||||
// Note: en-ud-tag.v2.valid.txt has 3 rows.
|
||||
// Note: en-ud-tag.v2.test.txt has 1 rows.
|
||||
// Note: en-ud-tag.v2.train.txt has 2 rows.
|
||||
// Set shuffle to files shuffle.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "all", 0, ShuffleMode::kFiles);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {{"Abed", "Psg", "Nine"}, {"...", "Psg", "---"},
|
||||
{"What", "Psg", "What"}, {"From", "Abed", "Ido"},
|
||||
{"Psg", "Psg", "Nine"}, {"Bus", "Psg", "Nine"}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto word = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {{}}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 3 + 1 + 2 = 6 samples.
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: read all data with no shuffle, num_parallel_workers=4, shard coverage.
|
||||
/// Expectation: return correct data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetShuffleFilesB) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetShuffleFilesB.";
|
||||
// Test UDPOS Dataset with files shuffle, num_parallel_workers=1.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(135);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(1);
|
||||
|
||||
// Create a UDPOS Dataset, with three UDPOS files, en-ud-tag.v2.valid.txt ,
|
||||
// en-ud-tag.v2.test.txt and en-ud-tag.v2.train.txt, in lexicographical order.
|
||||
// Note: en-ud-tag.v2.valid.txt has 3 rows.
|
||||
// Note: en-ud-tag.v2.test.txt has 1 rows.
|
||||
// Note: en-ud-tag.v2.train.txt has 2 rows.
|
||||
// Set shuffle to files shuffle.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "all", 0, ShuffleMode::kInfile);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {{"From", "Abed", "Ido"}, {"Psg", "Psg", "Nine"},
|
||||
{"Bus", "Psg", "Nine"}, {"What", "Psg", "What"},
|
||||
{"Abed", "Psg", "Nine"}, {"...", "Psg", "---"}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto word = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {{}}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 3 + 1 + 2 = 6 samples.
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration.
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: Test UDPOS Dataset.
|
||||
/// Description: read all data with global shuffle, num_parallel_workers=1.
|
||||
/// Expectation: return correct data.
|
||||
TEST_F(MindDataTestPipeline, TestUDPOSDatasetShuffleGlobal) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestUDPOSDatasetShuffleGlobal.";
|
||||
// Test UDPOS Dataset with one UDPOS file, global shuffle, num_parallel_workers=1.
|
||||
|
||||
// Set configuration.
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(246);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(1);
|
||||
|
||||
// Create a UDPOS Dataset, with one UDPOS files.
|
||||
// Note: en-ud-tag.v2.test.txt has 1 rows.
|
||||
// Set shuffle to global shuffle.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testUDPOSDataset/";
|
||||
std::shared_ptr<Dataset> ds = UDPOS(dataset_dir, "test", 0, ShuffleMode::kGlobal);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
std::vector<std::string> column_names = {"word", "universal", "stanford"};
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("word"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {{"What", "Psg", "What"}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto word = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(word, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {{}}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 1 samples.
|
||||
EXPECT_EQ(i, 1);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
|
@ -0,0 +1,21 @@
|
|||
From Abed Ido
|
||||
The Dead Dead
|
||||
Abed Psg Nine
|
||||
Come Vivi Vivi
|
||||
The Dead Dead
|
||||
Std Nine Nine
|
||||
|
||||
Psg Psg Nine
|
||||
Bus Psg Nine
|
||||
Ori Abed Iike
|
||||
The Psg Nine
|
||||
Abed Vivi Vivi
|
||||
The Nine Come
|
||||
|
||||
Bus Psg Nine
|
||||
Nine Vivi Vivi
|
||||
Job Psg Nine
|
||||
Mom Psg Nine
|
||||
Abed Psg Nine
|
||||
From Abed Iike
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
What Psg What
|
||||
Like Std Iike
|
||||
Good Psg Nine
|
||||
Mom Vivi Vivi
|
||||
Iike Abed Iike
|
||||
Good Psg Nine
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
Abed Psg Nine
|
||||
... Psg High
|
||||
Zoom Psg Nine
|
||||
... Psg ...
|
||||
Abed Abed Job
|
||||
From Nine Nine
|
||||
|
||||
... Psg ---
|
||||
The Dead Dead
|
||||
ken Nine Nine
|
||||
Ori Abed Iike
|
||||
... Dead Dead
|
||||
Respect Abed Job
|
||||
|
|
@ -0,0 +1,331 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
from util import config_get_set_num_parallel_workers, config_get_set_seed
|
||||
|
||||
DATA_DIR = '../data/dataset/testUDPOSDataset/'
|
||||
|
||||
|
||||
def test_udpos_dataset_one_file():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: read one file
|
||||
Expectation: throw number of data in a file
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["word"]))
|
||||
count += 1
|
||||
assert count == 1
|
||||
|
||||
|
||||
def test_udpos_dataset_all_file():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: read all file
|
||||
Expectation: throw number of data in all file
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=False)
|
||||
count = 0
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
logger.info("{}".format(i["word"]))
|
||||
count += 1
|
||||
assert count == 6
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_false_four_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: set up four parallel
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(987)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=False)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["From", "The", "Abed", "Come", "The", "Std",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"Abed", "...", "Zoom", "...", "Abed", "From",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"...", "The", "ken", "Ori", "...", "Respect",
|
||||
"Bus", "Nine", "Job", "Mom", "Abed", "From"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_false_one_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: no parallelism set
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(987)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=False)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["From", "The", "Abed", "Come", "The", "Std",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"Bus", "Nine", "Job", "Mom", "Abed", "From",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"Abed", "...", "Zoom", "...", "Abed", "From",
|
||||
"...", "The", "ken", "Ori", "...", "Respect"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_files_four_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: set four parallel and file Disorder
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(135)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.FILES)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["Abed", "...", "Zoom", "...", "Abed", "From",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"From", "The", "Abed", "Come", "The", "Std",
|
||||
"...", "The", "ken", "Ori", "...", "Respect",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"Bus", "Nine", "Job", "Mom", "Abed", "From"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_files_one_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: set no parallelism and file Disorder
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(135)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.FILES)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["Abed", "...", "Zoom", "...", "Abed", "From",
|
||||
"...", "The", "ken", "Ori", "...", "Respect",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"From", "The", "Abed", "Come", "The", "Std",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"Bus", "Nine", "Job", "Mom", "Abed", "From"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_global_four_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: set four parallel and all Disorder
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
||||
original_seed = config_get_set_seed(246)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.GLOBAL)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["Bus", "Nine", "Job", "Mom", "Abed", "From",
|
||||
"Abed", "...", "Zoom", "...", "Abed", "From",
|
||||
"From", "The", "Abed", "Come", "The", "Std",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"...", "The", "ken", "Ori", "...", "Respect"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_shuffle_global_one_parallel():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: set no parallelism and all Disorder
|
||||
Expectation: throw data
|
||||
"""
|
||||
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
||||
original_seed = config_get_set_seed(246)
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="all", shuffle=ds.Shuffle.GLOBAL)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["...", "The", "ken", "Ori", "...", "Respect",
|
||||
"Psg", "Bus", "Ori", "The", "Abed", "The",
|
||||
"From", "The", "Abed", "Come", "The", "Std",
|
||||
"Bus", "Nine", "Job", "Mom", "Abed", "From",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"Abed", "...", "Zoom", "...", "Abed", "From"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 6
|
||||
# Restore configuration
|
||||
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
||||
ds.config.set_seed(original_seed)
|
||||
|
||||
|
||||
def test_udpos_dataset_num_samples():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: read one file
|
||||
Expectation: throw number of file
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False, num_samples=2)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 1
|
||||
|
||||
|
||||
def test_udpos_dataset_distribution():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: read one file
|
||||
Expectation: throw number of file
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False, num_shards=2, shard_id=1)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 1
|
||||
|
||||
|
||||
def test_udpos_dataset_repeat():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: repeat read data
|
||||
Expectation: throw data
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
data = data.repeat(3)
|
||||
count = 0
|
||||
numword = 6
|
||||
line = ["What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good",
|
||||
"What", "Like", "Good", "Mom", "Iike", "Good"]
|
||||
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
for j in range(numword):
|
||||
strs = i["word"][j].item().decode("utf8")
|
||||
assert strs == line[count*6+j]
|
||||
count += 1
|
||||
assert count == 3
|
||||
|
||||
|
||||
def test_udpos_dataset_get_datasetsize():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: repeat read data
|
||||
Expectation: throw data
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
size = data.get_dataset_size()
|
||||
assert size == 6
|
||||
|
||||
|
||||
def test_udpos_dataset_to_device():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: transfer data from CPU to other devices
|
||||
Expectation: send
|
||||
"""
|
||||
data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
data = data.to_device()
|
||||
data.send()
|
||||
|
||||
|
||||
def test_udpos_dataset_exceptions():
|
||||
"""
|
||||
Feature: Test UDPOS Dataset.
|
||||
Description: send error when error occur
|
||||
Expectation: send error
|
||||
"""
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.UDPOSDataset(DATA_DIR, usage="test", num_samples=-1)
|
||||
assert "num_samples exceeds the boundary" in str(error_info.value)
|
||||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.UDPOSDataset("NotExistFile", usage="test")
|
||||
assert "The folder NotExistFile does not exist or is not a directory or permission denied!" in str(error_info.value)
|
||||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
_ = ds.TextFileDataset("")
|
||||
assert "The following patterns did not match any files" in str(error_info.value)
|
||||
|
||||
def exception_func(item):
|
||||
raise Exception("Error occur!")
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
data = data = ds.UDPOSDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
data = data.map(operations=exception_func, input_columns=["word"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(error_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_udpos_dataset_one_file()
|
||||
test_udpos_dataset_all_file()
|
||||
test_udpos_dataset_shuffle_false_four_parallel()
|
||||
test_udpos_dataset_shuffle_false_one_parallel()
|
||||
test_udpos_dataset_shuffle_files_one_parallel()
|
||||
test_udpos_dataset_shuffle_files_four_parallel()
|
||||
test_udpos_dataset_shuffle_global_four_parallel()
|
||||
test_udpos_dataset_shuffle_global_one_parallel()
|
||||
test_udpos_dataset_num_samples()
|
||||
test_udpos_dataset_distribution()
|
||||
test_udpos_dataset_repeat()
|
||||
test_udpos_dataset_get_datasetsize()
|
||||
test_udpos_dataset_to_device()
|
||||
test_udpos_dataset_exceptions()
|
Loading…
Reference in New Issue