diff --git a/docs/api/api_python/mindspore.ops.functional.rst b/docs/api/api_python/mindspore.ops.functional.rst index 14edb04bfef..23e03fe5d8c 100644 --- a/docs/api/api_python/mindspore.ops.functional.rst +++ b/docs/api/api_python/mindspore.ops.functional.rst @@ -215,6 +215,7 @@ Reduction算子 mindspore.ops.equal mindspore.ops.ge mindspore.ops.gt + mindspore.ops.intopk mindspore.ops.isfinite mindspore.ops.isnan mindspore.ops.le diff --git a/docs/api/api_python/mindspore/mindspore.Tensor.rst b/docs/api/api_python/mindspore/mindspore.Tensor.rst index b3070cc892c..467a802c033 100644 --- a/docs/api/api_python/mindspore/mindspore.Tensor.rst +++ b/docs/api/api_python/mindspore/mindspore.Tensor.rst @@ -593,6 +593,21 @@ mindspore.Tensor - **TypeError** - `indices` 不是int或tuple。 - **TypeError** - `indices` 是元组,但是其中的元素不是int。 + .. py:method:: intopk(x, k) + + 判断目标标签是否在前 `k` 个预测中。 + + 更多细节参考 :func:`mindspore.ops.intopk`。 + + **参数:** + + **x** (Tensor) - 1维Tensor,样本的标签。数据类型为int32。 `x` 的大小必须与该Tensor第一维度的大小相同。 `x` 取值不可为负且必须小于或等于该Tensor第二维度的大小。 + **k** (int32) - 指定在最后一维上参与比较的top元素的数量。 + + **返回:** + + 1维的bool类型Tensor,与 `x` shape相同。对于 `x` 中的样本标签 `i`,如果它在该Tensor的前 `k` 个预测值中,则输出值为True,否则为False。 + .. py:method:: item(index=None) 获取Tensor中指定索引的元素。 @@ -1508,3 +1523,4 @@ mindspore.Tensor Tensor,具有与入参 `shape` 相同的维度。 + diff --git a/docs/api/api_python/ops/mindspore.ops.InTopK.rst b/docs/api/api_python/ops/mindspore.ops.InTopK.rst index 024d3f07624..a9c2aa7c194 100644 --- a/docs/api/api_python/ops/mindspore.ops.InTopK.rst +++ b/docs/api/api_python/ops/mindspore.ops.InTopK.rst @@ -7,19 +7,19 @@ mindspore.ops.InTopK **参数:** - - **k** (int) - 指定 `k` 的值。 + - **k** (int) - 指定在最后一维上参与比较的top元素的数量。 **输入:** - + - **x1** (Tensor) - 2维Tensor,对样本的预测。数据类型支持float16或float32。 - **x2** (Tensor) - 1维Tensor,样本的标签。数据类型为int32。 `x2` 的大小必须与 `x1` 第一维度的大小相同。 `x2` 取值不可为负且必须小于或等于 `x1` 第二维度的大小。 **输出:** - - 1维的bool类型Tensor,与 `x2` shape相同。对于样本 `i` 在 `x2` 中的标签, 如果其在 `x1` 对样本 `i` 的前 `k` 个预测中,则输出值为True,否则为False。 + + 1维的bool类型Tensor,与 `x2` shape相同。对于 `x2` 中的样本标签 `i`,如果它在 `x1` 的前 `k` 个预测值中,则输出值为True,否则为False。 **异常:** - + - **TypeError** - `k` 不是int类型。 - **TypeError** - `x1` 或 `x2` 不是Tensor。 - **TypeError** - `x1` 的数据类型非float16或float32。 diff --git a/docs/api/api_python/ops/mindspore.ops.func_intopk.rst b/docs/api/api_python/ops/mindspore.ops.func_intopk.rst new file mode 100644 index 00000000000..5b3fce63d65 --- /dev/null +++ b/docs/api/api_python/ops/mindspore.ops.func_intopk.rst @@ -0,0 +1,22 @@ +mindspore.ops.intopk +==================== + +.. py:function:: mindspore.ops.intopk(x1, x2, k) + + 判断目标标签是否在前 `k` 个预测中。 + + **参数:** + + **x1** (Tensor) - 2维Tensor,对样本的预测。数据类型支持float16或float32。 + **x2** (Tensor) - 1维Tensor,样本的标签。数据类型为int32。 `x2` 的大小必须与 `x1` 第一维度的大小相同。 `x2` 取值不可为负且必须小于或等于 `x1` 第二维度的大小。 + **k** (int32) - 指定在最后一维上参与比较的top元素的数量。 + + **输出:** + + 1维的bool类型Tensor,与 `x2` shape相同。对于 `x2` 中的样本标签 `i`,如果它在 `x1` 的前 `k` 个预测值中,则输出值为True,否则为False。 + + **异常:** + + - **TypeError** - `k` 不是int类型。 + - **TypeError** - `x1` 或 `x2` 不是Tensor。 + - **TypeError** - `x1` 的数据类型非float16或float32。 diff --git a/docs/api/api_python_en/mindspore.ops.functional.rst b/docs/api/api_python_en/mindspore.ops.functional.rst index 795e2421bd4..7d026b70b8a 100644 --- a/docs/api/api_python_en/mindspore.ops.functional.rst +++ b/docs/api/api_python_en/mindspore.ops.functional.rst @@ -214,6 +214,7 @@ Comparison operators mindspore.ops.equal mindspore.ops.ge mindspore.ops.gt + mindspore.ops.intopk mindspore.ops.isfinite mindspore.ops.isnan mindspore.ops.le @@ -302,6 +303,7 @@ Array Operation mindspore.ops.gather mindspore.ops.gather_d mindspore.ops.gather_nd + mindspore.ops.intopk mindspore.ops.masked_select mindspore.ops.matrix_band_part mindspore.ops.matrix_diag diff --git a/mindspore/ccsrc/pipeline/jit/resource.cc b/mindspore/ccsrc/pipeline/jit/resource.cc index 1dfb1cc5c05..1be28845c4b 100644 --- a/mindspore/ccsrc/pipeline/jit/resource.cc +++ b/mindspore/ccsrc/pipeline/jit/resource.cc @@ -246,6 +246,7 @@ BuiltInTypeMap &GetMethodMap() { {"cdist", std::string("cdist")}, // P.cdist {"hardshrink", std::string("hardshrink")}, // P.hshrink {"one_hot", std::string("one_hot")}, // P.OneHot + {"intopk", std::string("intopk")}, // P.InTopK {"gather_nd", std::string("gather_nd")}, // P.GatherNd() {"unique_consecutive", std::string("unique_consecutive")}, // UniqueConsecutive() {"diag", std::string("diag")}, // P.Diag() diff --git a/mindspore/python/mindspore/_extends/parse/standard_method.py b/mindspore/python/mindspore/_extends/parse/standard_method.py index 1547004d30e..19037944d70 100644 --- a/mindspore/python/mindspore/_extends/parse/standard_method.py +++ b/mindspore/python/mindspore/_extends/parse/standard_method.py @@ -1642,6 +1642,14 @@ def masked_fill(x, mask, value): return C.array_ops.masked_fill(x, mask, value) +def intopk(x1, x2, k): + """ + Determines whether the targets are in the top `k` predictions. + """ + check_is_int(k, 'k') + return F.intopk(x1, x2, k) + + def narrow(x, axis, start, length): """ Returns a narrowed tensor from input tensor. diff --git a/mindspore/python/mindspore/common/tensor.py b/mindspore/python/mindspore/common/tensor.py index b9c4acfa96c..4c377a9cdb4 100644 --- a/mindspore/python/mindspore/common/tensor.py +++ b/mindspore/python/mindspore/common/tensor.py @@ -3800,6 +3800,29 @@ class Tensor(Tensor_): self._init_check() return tensor_operator_registry.get('diag')()(self) + def intopk(self, x, k): + r""" + Determines whether the targets are in the top `k` predictions. + + Refer to :func:`mindspore.ops.intopk` for more detail. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32) + >>> x2 = Tensor(np.array([1, 3]), mindspore.int32) + >>> output = x1.intopk(x2, 3) + >>> print(output) + [ True False] + """ + if not isinstance(x, Tensor): + raise TypeError("For 'Tensor.intopk', the type of the argument 'x' must be Tensor, but " + "got {}.".format(type(x))) + validator.check_type_name('x', x.dtype, [mstype.float16, mstype.float32], "Tensor") + validator.check_value_type("k", k, [int], "Tensor") + return tensor_operator_registry.get('intopk')(self, x, k) + class RowTensor(RowTensor_): """ diff --git a/mindspore/python/mindspore/ops/_vmap/vmap_nn_ops.py b/mindspore/python/mindspore/ops/_vmap/vmap_nn_ops.py index 909302165f9..7d315c71a68 100644 --- a/mindspore/python/mindspore/ops/_vmap/vmap_nn_ops.py +++ b/mindspore/python/mindspore/ops/_vmap/vmap_nn_ops.py @@ -123,6 +123,30 @@ def get_dropout_nd_vmap_rule(prim, axis_size): return vmap_rule +@vmap_rules_getters.register(P.InTopK) +def get_in_top_k_vmap_rule(prim, axis_size): + """VmapRule for `InTopK`.""" + + def vmap_rule(x1_bdim, x2_bdim): + is_all_none, result = vmap_general_preprocess(prim, x1_bdim, x2_bdim) + if is_all_none: + return result + + x1, x1_dim = x1_bdim + x2, x2_dim = x2_bdim + x1 = _bdim_at_front(x1, x1_dim, axis_size) + x2 = _bdim_at_front(x2, x2_dim, axis_size) + x1_shape = F.shape(x1) + x2_shape = F.shape(x2) + x1 = F.reshape(x1, (-1, x1_shape[-1])) + x2 = F.reshape(x2, (-1,)) + output = prim(x1, x2) + output = F.reshape(output, x2_shape) + return (output, 0) + + return vmap_rule + + @vmap_rules_getters.register(G.FastGeLUGrad) @vmap_rules_getters.register(G.HShrinkGrad) def get_fast_gelu_grad_vmap_rule(prim, axis_size): diff --git a/mindspore/python/mindspore/ops/function/__init__.py b/mindspore/python/mindspore/ops/function/__init__.py index 53ce167f82e..27333623d4a 100644 --- a/mindspore/python/mindspore/ops/function/__init__.py +++ b/mindspore/python/mindspore/ops/function/__init__.py @@ -199,6 +199,7 @@ from .nn_func import ( deformable_conv2d, fast_gelu, hardshrink, + intopk, softsign, pdist, nll_loss, diff --git a/mindspore/python/mindspore/ops/function/nn_func.py b/mindspore/python/mindspore/ops/function/nn_func.py index b962a076924..aea075f1123 100644 --- a/mindspore/python/mindspore/ops/function/nn_func.py +++ b/mindspore/python/mindspore/ops/function/nn_func.py @@ -461,10 +461,45 @@ def _nll_loss(inputs, target, target_dim=-1, weight=None, ignore_index=None, red return loss +def intopk(x1, x2, k): + r""" + Determines whether the targets are in the top `k` predictions. + + Args: + x1 (Tensor): A 2D Tensor defines the predictions of a batch of samples with float16 or float32 + data type. + x2 (Tensor): A 1D Tensor defines the labels of a batch of samples with int32 data type. The size of `x2` + must be equal to the first dimension of `x1`. The values of `x2` can not be negative and + must be equal to or less than index of x1's second dimension. + k (int): Specifies the number of top elements to be used for computing precision along the last dimension. + + Returns: + Tensor has 1 dimension of type bool and the same shape with `x2`. For labeling sample `i` in `x2`, + if the label in the first `k` predictions for sample `i` is in `x1`, then the value is True, otherwise False. + + Raises: + TypeError: If `k` is not an int. + TypeError: If `x1` or `x2` is not a Tensor. + TypeError: If dtype of `x1` is neither float16 nor float32. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32) + >>> x2 = Tensor(np.array([1, 3]), mindspore.int32) + >>> output = ops.intopk(x1, x2, 3) + >>> print(output) + [ True False] + """ + return P.InTopK(k)(x1, x2) + + __all__ = [ 'deformable_conv2d', 'fast_gelu', 'hardshrink', + 'intopk', 'softsign', 'pdist', 'cross_entropy', diff --git a/mindspore/python/mindspore/ops/functional.py b/mindspore/python/mindspore/ops/functional.py index 698552dcd6c..7422db47661 100644 --- a/mindspore/python/mindspore/ops/functional.py +++ b/mindspore/python/mindspore/ops/functional.py @@ -979,6 +979,7 @@ tensor_operator_registry.register('stack', P.Stack) tensor_operator_registry.register('log', log) tensor_operator_registry.register('lerp', lerp) tensor_operator_registry.register('floor', floor) +tensor_operator_registry.register('intopk', intopk) # support sparse tensor operators tensor_operator_registry.register('csr_mul', csr_mul) tensor_operator_registry.register('csr2coo', csr2coo) diff --git a/mindspore/python/mindspore/ops/operations/nn_ops.py b/mindspore/python/mindspore/ops/operations/nn_ops.py index 2c9ab9917a7..6f7194de423 100644 --- a/mindspore/python/mindspore/ops/operations/nn_ops.py +++ b/mindspore/python/mindspore/ops/operations/nn_ops.py @@ -7680,27 +7680,10 @@ class InTopK(PrimitiveWithInfer): r""" Determines whether the targets are in the top `k` predictions. - Args: - k (int): Specifies the number of top elements to be used for computing precision. - - Inputs: - - **x1** (Tensor) - A 2D Tensor defines the predictions of a batch of samples with float16 or float32 - data type. - - **x2** (Tensor) - A 1D Tensor defines the labels of a batch of samples with int32 data type. The size of x2 - must be equal to x1's first dimension. The values of `x2` can not be negative and - must be equal to or less than index of x1's second dimension. - - Outputs: - Tensor has 1 dimension of type bool and the same shape with `x2`. For labeling sample `i` in `x2`, - if the label in the first `k` predictions for sample `i` is in `x1`, then the value is True, otherwise False. - - Raises: - TypeError: If `k` is not an int. - TypeError: If `x1` or `x2` is not a Tensor. - TypeError: If dtype of `x1` is neither float16 nor float32. + Refer to :func:`mindspore.ops.tanh` for more detail. Supported Platforms: - ``Ascend`` ``GPU`` + ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32)