diff --git a/mindspore/nn/probability/distribution/__init__.py b/mindspore/nn/probability/distribution/__init__.py index 0d35d2ed8a1..c4077376a58 100644 --- a/mindspore/nn/probability/distribution/__init__.py +++ b/mindspore/nn/probability/distribution/__init__.py @@ -22,6 +22,7 @@ from .bernoulli import Bernoulli from .categorical import Categorical from .cauchy import Cauchy from .exponential import Exponential +from .gamma import Gamma from .geometric import Geometric from .gumbel import Gumbel from .logistic import Logistic @@ -36,6 +37,7 @@ __all__ = ['Distribution', 'Categorical', 'Cauchy', 'Exponential', + 'Gamma', 'Geometric', 'Gumbel', 'Logistic', diff --git a/mindspore/nn/probability/distribution/gamma.py b/mindspore/nn/probability/distribution/gamma.py new file mode 100644 index 00000000000..17e946aca4e --- /dev/null +++ b/mindspore/nn/probability/distribution/gamma.py @@ -0,0 +1,338 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Gamma Distribution""" +import numpy as np +from mindspore.ops import operations as P +from mindspore.ops import composite as C +import mindspore.nn as nn +from mindspore._checkparam import Validator +from mindspore.common import dtype as mstype +from .distribution import Distribution +from ._utils.utils import check_greater_zero, check_distribution_name +from ._utils.custom_ops import log_generic + + +class Gamma(Distribution): + """ + Gamma distribution. + + Args: + concentration (int, float, list, numpy.ndarray, Tensor, Parameter): The concentration, + also know as alpha of the Gamma distribution. + rate (int, float, list, numpy.ndarray, Tensor, Parameter): The rate, also know as + beta of the Gamma distribution. + seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. + dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. + name (str): The name of the distribution. Default: 'Gamma'. + + Note: + `concentration` and `rate` must be greater than zero. + `dist_spec_args` are `concentration` and `rate`. + `dtype` must be a float type because Gamma distributions are continuous. + + Examples: + >>> # To initialize a Gamma distribution of the concentration 3.0 and the rate 4.0. + >>> import mindspore.nn.probability.distribution as msd + >>> g = msd.Gamma(3.0, 4.0, dtype=mstype.float32) + >>> + >>> # The following creates two independent Gamma distributions. + >>> g = msd.Gamma([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32) + >>> + >>> # A Gamma distribution can be initilized without arguments. + >>> # In this case, `concentration` and `rate` must be passed in through arguments. + >>> g = msd.Gamma(dtype=mstype.float32) + >>> + >>> # To use a Gamma distribution in a network. + >>> class net(Cell): + ... def __init__(self): + ... super(net, self).__init__(): + ... self.g1 = msd.Gamma(1.0, 1.0, dtype=mstype.float32) + ... self.g2 = msd.Gamma(dtype=mstype.float32) + ... + ... # The following calls are valid in construct. + ... def construct(self, value, concentration_b, rate_b, concentration_a, rate_a): + ... + ... # Private interfaces of probability functions corresponding to public interfaces, including + ... # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same arguments as follows. + ... # Args: + ... # value (Tensor): the value to be evaluated. + ... # concentration (Tensor): the concentration of the distribution. Default: self._concentration. + ... # rate (Tensor): the rate of the distribution. Default: self._rate. + ... + ... # Examples of `prob`. + ... # Similar calls can be made to other probability functions + ... # by replacing 'prob' by the name of the function + ... ans = self.g1.prob(value) + ... # Evaluate with respect to the distribution b. + ... ans = self.g1.prob(value, concentration_b, rate_b) + ... # `concentration` and `rate` must be passed in during function calls + ... ans = self.g2.prob(value, concentration_a, rate_a) + ... + ... + ... # Functions `concentration`, `rate`, `mean`, `sd`, `var`, and `entropy` have the same arguments. + ... # Args: + ... # concentration (Tensor): the concentration of the distribution. Default: self._concentration. + ... # rate (Tensor): the rate of the distribution. Default: self._rate. + ... + ... # Example of `concentration`, `rate`, `mean`. `sd`, `var`, and `entropy` are similar. + ... ans = self.g1.concentration() # return 1.0 + ... ans = self.g1.concentration(concentration_b, rate_b) # return concentration_b + ... # `concentration` and `rate` must be passed in during function calls. + ... ans = self.g2.concentration(concentration_a, rate_a) + ... + ... + ... # Interfaces of 'kl_loss' and 'cross_entropy' are the same: + ... # Args: + ... # dist (str): the type of the distributions. Only "Gamma" is supported. + ... # concentration_b (Tensor): the concentration of distribution b. + ... # rate_b (Tensor): the rate of distribution b. + ... # concentration_a (Tensor): the concentration of distribution a. Default: self._concentration. + ... # rate_a (Tensor): the rate of distribution a. Default: self._rate. + ... + ... # Examples of `kl_loss`. `cross_entropy` is similar. + ... ans = self.g1.kl_loss('Gamma', concentration_b, rate_b) + ... ans = self.g1.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a) + ... # Additional `concentration` and `rate` must be passed in. + ... ans = self.g2.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a) + ... + ... + ... # Examples of `sample`. + ... # Args: + ... # shape (tuple): the shape of the sample. Default: () + ... # concentration (Tensor): the concentration of the distribution. Default: self._concentration. + ... # rate (Tensor): the rate of the distribution. Default: self._rate. + ... ans = self.g1.sample() + ... ans = self.g1.sample((2,3)) + ... ans = self.g1.sample((2,3), concentration_b, rate_b) + ... ans = self.g2.sample((2,3), concentration_a, rate_a) + """ + + def __init__(self, + concentration=None, + rate=None, + seed=None, + dtype=mstype.float32, + name="Gamma"): + """ + Constructor of Gamma. + """ + param = dict(locals()) + param['param_dict'] = {'concentration': concentration, 'rate': rate} + valid_dtype = mstype.float_type + Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) + super(Gamma, self).__init__(seed, dtype, name, param) + + self._concentration = self._add_parameter(concentration, 'concentration') + self._rate = self._add_parameter(rate, 'rate') + if self._concentration is not None: + check_greater_zero(self._concentration, "concentration") + if self._rate is not None: + check_greater_zero(self._rate, "rate") + + # ops needed for the class + self.log = log_generic + self.square = P.Square() + self.sqrt = P.Sqrt() + self.squeeze = P.Squeeze(0) + self.cast = P.Cast() + self.dtypeop = P.DType() + self.fill = P.Fill() + self.shape = P.Shape() + self.select = P.Select() + self.greater = P.Greater() + self.lgamma = nn.LGamma() + self.digamma = nn.DiGamma() + self.igamma = nn.IGamma() + + def extend_repr(self): + if self.is_scalar_batch: + s = f'concentration = {self._concentration}, rate = {self._rate}' + else: + s = f'batch_shape = {self._broadcast_shape}' + return s + + @property + def concentration(self): + """ + Return the concentration, also know as the alpha of the Gamma distribution. + """ + return self._concentration + + @property + def rate(self): + """ + Return the rate, also know as the beta of the Gamma distribution. + """ + return self._rate + + def _get_dist_type(self): + return "Gamma" + + def _get_dist_args(self, concentration=None, rate=None): + if concentration is not None: + self.checktensor(concentration, 'concentration') + else: + concentration = self._concentration + if rate is not None: + self.checktensor(rate, 'rate') + else: + rate = self._rate + return concentration, rate + + def _mean(self, concentration=None, rate=None): + """ + The mean of the distribution. + """ + concentration, rate = self._check_param_type(concentration, rate) + return concentration / rate + + def _var(self, concentration=None, rate=None): + """ + The variance of the distribution. + """ + concentration, rate = self._check_param_type(concentration, rate) + return concentration / self.square(rate) + + def _sd(self, concentration=None, rate=None): + """ + The standard deviation of the distribution. + """ + concentration, rate = self._check_param_type(concentration, rate) + return self.sqrt(concentration) / rate + + def _mode(self, concentration=None, rate=None): + """ + The mode of the distribution. + """ + concentration, rate = self._check_param_type(concentration, rate) + mode = (concentration - 1.) / rate + nan = self.fill(self.dtypeop(concentration), self.shape(concentration), np.nan) + comp = self.greater(concentration, 1.) + return self.select(comp, mode, nan) + + def _entropy(self, concentration=None, rate=None): + r""" + Evaluate entropy. + + .. math:: + H(X) = \alpha - \log(\beta) + \log(\Gamma(\alpha)) + (1 - \alpha) * \digamma(\alpha) + """ + concentration, rate = self._check_param_type(concentration, rate) + return concentration - self.log(rate) + self.lgamma(concentration) \ + + (1. - concentration) * self.digamma(concentration) + + def _cross_entropy(self, dist, concentration_b, rate_b, concentration=None, rate=None): + r""" + Evaluate cross entropy between Gamma distributions. + + Args: + dist (str): Type of the distributions. Should be "Gamma" in this case. + concentration_b (Tensor): concentration of distribution b. + rate_b (Tensor): rate of distribution b. + concentration_a (Tensor): concentration of distribution a. Default: self._concentration. + rate_a (Tensor): rate of distribution a. Default: self._rate. + """ + check_distribution_name(dist, 'Gamma') + return self._entropy(concentration, rate) + self._kl_loss(dist, concentration_b, rate_b, concentration, rate) + + def _log_prob(self, value, concentration=None, rate=None): + r""" + Evaluate log probability. + + Args: + value (Tensor): The value to be evaluated. + concentration (Tensor): The concentration of the distribution. Default: self._concentration. + rate (Tensor): The rate the distribution. Default: self._rate. + + .. math:: + L(x) = (\alpha - 1) * \log(x) - \beta * x - \log(\gamma(\alpha)) - \alpha * \log(\beta) + """ + value = self._check_value(value, 'value') + value = self.cast(value, self.dtype) + concentration, rate = self._check_param_type(concentration, rate) + unnormalized_log_prob = (concentration - 1.) * self.log(value) - rate * value + log_normalization = self.lgamma(concentration) - concentration * self.log(rate) + return unnormalized_log_prob - log_normalization + + def _cdf(self, value, concentration=None, rate=None): + r""" + Evaluate the cumulative distribution function on the given value. Note that igamma returns + the regularized incomplete gamma function, which is what we want for the CDF. + + Args: + value (Tensor): The value to be evaluated. + concentration (Tensor): The concentration of the distribution. Default: self._concentration. + rate (Tensor): The rate the distribution. Default: self._rate. + + .. math:: + cdf(x) = \igamma(\alpha, \beta * x) + """ + value = self._check_value(value, 'value') + value = self.cast(value, self.dtype) + concentration, rate = self._check_param_type(concentration, rate) + return self.igamma(concentration, rate * value) + + def _kl_loss(self, dist, concentration_b, rate_b, concentration=None, rate=None): + r""" + Evaluate Gamma-Gamma KL divergence, i.e. KL(a||b). + + Args: + dist (str): The type of the distributions. Should be "Gamma" in this case. + concentration_b (Tensor): The concentration of distribution b. + rate_b (Tensor): The rate distribution b. + concentration_a (Tensor): The concentration of distribution a. Default: self._concentration. + rate_a (Tensor): The rate distribution a. Default: self._rate. + + .. math:: + KL(a||b) = (\alpha_{a} - \alpha_{b}) * \digamma(\alpha_{a}) + \log(\gamma(\alpha_{b})) + - \log(\gamma(\alpha_{a})) + \alpha_{b} * \log(\beta{a}) - \alpha_{b} * \log(\beta{b}) + + \alpha_{a} * \frac{\beta{b}}{\beta{a} - 1} + """ + check_distribution_name(dist, 'Gamma') + concentration_b = self._check_value(concentration_b, 'concentration_b') + rate_b = self._check_value(rate_b, 'rate_b') + concentration_b = self.cast(concentration_b, self.parameter_type) + rate_b = self.cast(rate_b, self.parameter_type) + concentration_a, rate_a = self._check_param_type(concentration, rate) + return (concentration_a - concentration_b) * self.digamma(concentration_a) \ + + self.lgamma(concentration_b) - self.lgamma(concentration_a) \ + + concentration_b * self.log(rate_a) - concentration_b * self.log(rate_b) \ + + concentration_a * (rate_b / rate_a - 1.) + + def _sample(self, shape=(), concentration=None, rate=None): + """ + Sampling. + + Args: + shape (tuple): The shape of the sample. Default: (). + concentration (Tensor): The concentration of the samples. Default: self._concentration. + rate (Tensor): The rate of the samples. Default: self._rate. + + Returns: + Tensor, with the shape being shape + batch_shape. + """ + shape = self.checktuple(shape, 'shape') + concentration, rate = self._check_param_type(concentration, rate) + batch_shape = self.shape(concentration + rate) + origin_shape = shape + batch_shape + if origin_shape == (): + sample_shape = (1,) + else: + sample_shape = origin_shape + sample_gamma = C.gamma(sample_shape, concentration, rate, self.seed) + value = self.cast(sample_gamma, self.dtype) + if origin_shape == (): + value = self.squeeze(value) + return value diff --git a/tests/st/probability/distribution/test_gamma.py b/tests/st/probability/distribution/test_gamma.py new file mode 100644 index 00000000000..57e45844e4e --- /dev/null +++ b/tests/st/probability/distribution/test_gamma.py @@ -0,0 +1,328 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""test cases for Gamma distribution""" +import numpy as np +from scipy import stats +from scipy import special +import mindspore.context as context +import mindspore.nn as nn +import mindspore.nn.probability.distribution as msd +from mindspore import Tensor +from mindspore import dtype + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +class Prob(nn.Cell): + """ + Test class: probability of Gamma distribution. + """ + def __init__(self): + super(Prob, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.prob(x_) + +def test_pdf(): + """ + Test pdf. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_pdf = gamma_benchmark.pdf([1.0, 2.0]).astype(np.float32) + pdf = Prob() + output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32)) + tol = 1e-6 + assert (np.abs(output.asnumpy() - expect_pdf) < tol).all() + +class LogProb(nn.Cell): + """ + Test class: log probability of Gamma distribution. + """ + def __init__(self): + super(LogProb, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.log_prob(x_) + +def test_log_likelihood(): + """ + Test log_pdf. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_logpdf = gamma_benchmark.logpdf([1.0, 2.0]).astype(np.float32) + logprob = LogProb() + output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32)) + tol = 1e-6 + assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all() + + +class KL(nn.Cell): + """ + Test class: kl_loss of Gamma distribution. + """ + def __init__(self): + super(KL, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) + + def construct(self, x_, y_): + return self.g.kl_loss('Gamma', x_, y_) + + +def test_kl_loss(): + """ + Test kl_loss. + """ + concentration_a = np.array([3.0]).astype(np.float32) + rate_a = np.array([4.0]).astype(np.float32) + + concentration_b = np.array([1.0]).astype(np.float32) + rate_b = np.array([1.0]).astype(np.float32) + + expect_kl_loss = (concentration_a - concentration_b) * special.digamma(concentration_a) \ + + special.gammaln(concentration_b) - special.gammaln(concentration_a) \ + + concentration_b * np.log(rate_a) - concentration_b * np.log(rate_b) \ + + concentration_a * (rate_b / rate_a - 1.) + + kl_loss = KL() + concentration = Tensor(concentration_b, dtype=dtype.float32) + rate = Tensor(rate_b, dtype=dtype.float32) + output = kl_loss(concentration, rate) + tol = 1e-6 + assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all() + +class Basics(nn.Cell): + """ + Test class: mean/sd/mode of Gamma distribution. + """ + def __init__(self): + super(Basics, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self): + return self.g.mean(), self.g.sd(), self.g.mode() + +def test_basics(): + """ + Test mean/standard deviation/mode. + """ + basics = Basics() + mean, sd, mode = basics() + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_mean = gamma_benchmark.mean().astype(np.float32) + expect_sd = gamma_benchmark.std().astype(np.float32) + expect_mode = [2.0] + tol = 1e-6 + assert (np.abs(mean.asnumpy() - expect_mean) < tol).all() + assert (np.abs(mode.asnumpy() - expect_mode) < tol).all() + assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() + +class Sampling(nn.Cell): + """ + Test class: sample of Gamma distribution. + """ + def __init__(self, shape, seed=0): + super(Sampling, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), seed=seed, dtype=dtype.float32) + self.shape = shape + + def construct(self, concentration=None, rate=None): + return self.g.sample(self.shape, concentration, rate) + +def test_sample(): + """ + Test sample. + """ + shape = (2, 3) + seed = 10 + concentration = Tensor([2.0], dtype=dtype.float32) + rate = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32) + sample = Sampling(shape, seed=seed) + output = sample(concentration, rate) + assert output.shape == (2, 3, 3) + +class CDF(nn.Cell): + """ + Test class: cdf of Gamma distribution. + """ + def __init__(self): + super(CDF, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.cdf(x_) + + +def test_cdf(): + """ + Test cdf. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_cdf = gamma_benchmark.cdf([2.0]).astype(np.float32) + cdf = CDF() + output = cdf(Tensor([2.0], dtype=dtype.float32)) + tol = 2e-5 + assert (np.abs(output.asnumpy() - expect_cdf) < tol).all() + +class LogCDF(nn.Cell): + """ + Test class: log_cdf of Mormal distribution. + """ + def __init__(self): + super(LogCDF, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.log_cdf(x_) + +def test_log_cdf(): + """ + Test log cdf. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_logcdf = gamma_benchmark.logcdf([2.0]).astype(np.float32) + logcdf = LogCDF() + output = logcdf(Tensor([2.0], dtype=dtype.float32)) + tol = 5e-5 + assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all() + +class SF(nn.Cell): + """ + Test class: survival function of Gamma distribution. + """ + def __init__(self): + super(SF, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.survival_function(x_) + +def test_survival(): + """ + Test log_survival. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_survival = gamma_benchmark.sf([2.0]).astype(np.float32) + survival_function = SF() + output = survival_function(Tensor([2.0], dtype=dtype.float32)) + tol = 2e-5 + assert (np.abs(output.asnumpy() - expect_survival) < tol).all() + +class LogSF(nn.Cell): + """ + Test class: log survival function of Gamma distribution. + """ + def __init__(self): + super(LogSF, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_): + return self.g.log_survival(x_) + +def test_log_survival(): + """ + Test log_survival. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_log_survival = gamma_benchmark.logsf([2.0]).astype(np.float32) + log_survival = LogSF() + output = log_survival(Tensor([2.0], dtype=dtype.float32)) + tol = 2e-5 + assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all() + +class EntropyH(nn.Cell): + """ + Test class: entropy of Gamma distribution. + """ + def __init__(self): + super(EntropyH, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self): + return self.g.entropy() + +def test_entropy(): + """ + Test entropy. + """ + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_entropy = gamma_benchmark.entropy().astype(np.float32) + entropy = EntropyH() + output = entropy() + tol = 1e-6 + assert (np.abs(output.asnumpy() - expect_entropy) < tol).all() + +class CrossEntropy(nn.Cell): + """ + Test class: cross entropy between Gamma distributions. + """ + def __init__(self): + super(CrossEntropy, self).__init__() + self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_, y_): + entropy = self.g.entropy() + kl_loss = self.g.kl_loss('Gamma', x_, y_) + h_sum_kl = entropy + kl_loss + cross_entropy = self.g.cross_entropy('Gamma', x_, y_) + return h_sum_kl - cross_entropy + +def test_cross_entropy(): + """ + Test cross_entropy. + """ + cross_entropy = CrossEntropy() + concentration = Tensor([3.0], dtype=dtype.float32) + rate = Tensor([2.0], dtype=dtype.float32) + diff = cross_entropy(concentration, rate) + tol = 1e-6 + assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all() + +class Net(nn.Cell): + """ + Test class: expand single distribution instance to multiple graphs + by specifying the attributes. + """ + + def __init__(self): + super(Net, self).__init__() + self.Gamma = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32) + + def construct(self, x_, y_): + kl = self.Gamma.kl_loss('Gamma', x_, y_) + prob = self.Gamma.prob(kl) + return prob + +def test_multiple_graphs(): + """ + Test multiple graphs case. + """ + prob = Net() + concentration_a = np.array([3.0]).astype(np.float32) + rate_a = np.array([1.0]).astype(np.float32) + concentration_b = np.array([2.0]).astype(np.float32) + rate_b = np.array([1.0]).astype(np.float32) + ans = prob(Tensor(concentration_b), Tensor(rate_b)) + + expect_kl_loss = (concentration_a - concentration_b) * special.digamma(concentration_a) \ + + special.gammaln(concentration_b) - special.gammaln(concentration_a) \ + + concentration_b * np.log(rate_a) - concentration_b * np.log(rate_b) \ + + concentration_a * (rate_b / rate_a - 1.) + + gamma_benchmark = stats.gamma(np.array([3.0])) + expect_prob = gamma_benchmark.pdf(expect_kl_loss).astype(np.float32) + + tol = 1e-6 + assert (np.abs(ans.asnumpy() - expect_prob) < tol).all() diff --git a/tests/ut/python/nn/probability/distribution/test_gamma.py b/tests/ut/python/nn/probability/distribution/test_gamma.py new file mode 100644 index 00000000000..9e9ea58e755 --- /dev/null +++ b/tests/ut/python/nn/probability/distribution/test_gamma.py @@ -0,0 +1,214 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +Test nn.probability.distribution.Gamma. +""" +import numpy as np +import pytest + +import mindspore.nn as nn +import mindspore.nn.probability.distribution as msd +from mindspore import dtype +from mindspore import Tensor + +def test_gamma_shape_errpr(): + """ + Invalid shapes. + """ + with pytest.raises(ValueError): + msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) + +def test_type(): + with pytest.raises(TypeError): + msd.Gamma(0., 1., dtype=dtype.int32) + +def test_name(): + with pytest.raises(TypeError): + msd.Gamma(0., 1., name=1.0) + +def test_seed(): + with pytest.raises(TypeError): + msd.Gamma(0., 1., seed='seed') + +def test_rate(): + with pytest.raises(ValueError): + msd.Gamma(0., 0.) + with pytest.raises(ValueError): + msd.Gamma(0., -1.) + +def test_arguments(): + """ + args passing during initialization. + """ + g = msd.Gamma() + assert isinstance(g, msd.Distribution) + g = msd.Gamma([3.0], [4.0], dtype=dtype.float32) + assert isinstance(g, msd.Distribution) + + +class GammaProb(nn.Cell): + """ + Gamma distribution: initialize with concentration/rate. + """ + def __init__(self): + super(GammaProb, self).__init__() + self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32) + + def construct(self, value): + prob = self.gamma.prob(value) + log_prob = self.gamma.log_prob(value) + cdf = self.gamma.cdf(value) + log_cdf = self.gamma.log_cdf(value) + sf = self.gamma.survival_function(value) + log_sf = self.gamma.log_survival(value) + return prob + log_prob + cdf + log_cdf + sf + log_sf + +def test_gamma_prob(): + """ + Test probability functions: passing value through construct. + """ + net = GammaProb() + value = Tensor([0.5, 1.0], dtype=dtype.float32) + ans = net(value) + assert isinstance(ans, Tensor) + + +class GammaProb1(nn.Cell): + """ + Gamma distribution: initialize without concentration/rate. + """ + def __init__(self): + super(GammaProb1, self).__init__() + self.gamma = msd.Gamma() + + def construct(self, value, concentration, rate): + prob = self.gamma.prob(value, concentration, rate) + log_prob = self.gamma.log_prob(value, concentration, rate) + cdf = self.gamma.cdf(value, concentration, rate) + log_cdf = self.gamma.log_cdf(value, concentration, rate) + sf = self.gamma.survival_function(value, concentration, rate) + log_sf = self.gamma.log_survival(value, concentration, rate) + return prob + log_prob + cdf + log_cdf + sf + log_sf + +def test_gamma_prob1(): + """ + Test probability functions: passing concentration/rate, value through construct. + """ + net = GammaProb1() + value = Tensor([0.5, 1.0], dtype=dtype.float32) + concentration = Tensor([2.0, 3.0], dtype=dtype.float32) + rate = Tensor([1.0], dtype=dtype.float32) + ans = net(value, concentration, rate) + assert isinstance(ans, Tensor) + +class GammaKl(nn.Cell): + """ + Test class: kl_loss of Gamma distribution. + """ + def __init__(self): + super(GammaKl, self).__init__() + self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) + self.g2 = msd.Gamma(dtype=dtype.float32) + + def construct(self, concentration_b, rate_b, concentration_a, rate_a): + kl1 = self.g1.kl_loss('Gamma', concentration_b, rate_b) + kl2 = self.g2.kl_loss('Gamma', concentration_b, rate_b, concentration_a, rate_a) + return kl1 + kl2 + +def test_kl(): + """ + Test kl_loss. + """ + net = GammaKl() + concentration_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) + rate_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) + concentration_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) + rate_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) + ans = net(concentration_b, rate_b, concentration_a, rate_a) + assert isinstance(ans, Tensor) + +class GammaCrossEntropy(nn.Cell): + """ + Test class: cross_entropy of Gamma distribution. + """ + def __init__(self): + super(GammaCrossEntropy, self).__init__() + self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) + self.g2 = msd.Gamma(dtype=dtype.float32) + + def construct(self, concentration_b, rate_b, concentration_a, rate_a): + h1 = self.g1.cross_entropy('Gamma', concentration_b, rate_b) + h2 = self.g2.cross_entropy('Gamma', concentration_b, rate_b, concentration_a, rate_a) + return h1 + h2 + +def test_cross_entropy(): + """ + Test cross entropy between Gamma distributions. + """ + net = GammaCrossEntropy() + concentration_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) + rate_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) + concentration_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) + rate_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) + ans = net(concentration_b, rate_b, concentration_a, rate_a) + assert isinstance(ans, Tensor) + +class GammaBasics(nn.Cell): + """ + Test class: basic mean/sd function. + """ + def __init__(self): + super(GammaBasics, self).__init__() + self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32) + + def construct(self): + mean = self.g.mean() + sd = self.g.sd() + mode = self.g.mode() + return mean + sd + mode + +def test_bascis(): + """ + Test mean/sd/mode/entropy functionality of Gamma. + """ + net = GammaBasics() + ans = net() + assert isinstance(ans, Tensor) + +class GammaConstruct(nn.Cell): + """ + Gamma distribution: going through construct. + """ + def __init__(self): + super(GammaConstruct, self).__init__() + self.gamma = msd.Gamma([3.0], [4.0]) + self.gamma1 = msd.Gamma() + + def construct(self, value, concentration, rate): + prob = self.gamma('prob', value) + prob1 = self.gamma('prob', value, concentration, rate) + prob2 = self.gamma1('prob', value, concentration, rate) + return prob + prob1 + prob2 + +def test_gamma_construct(): + """ + Test probability function going through construct. + """ + net = GammaConstruct() + value = Tensor([0.5, 1.0], dtype=dtype.float32) + concentration = Tensor([0.0], dtype=dtype.float32) + rate = Tensor([1.0], dtype=dtype.float32) + ans = net(value, concentration, rate) + assert isinstance(ans, Tensor)