!5088 Fix MASS and FasterRcnn CI Problem.

Merge pull request !5088 from linqingke/mass
This commit is contained in:
mindspore-ci-bot 2020-08-27 09:30:58 +08:00 committed by Gitee
commit 92e2d21ea4
4 changed files with 9 additions and 6 deletions

View File

@ -27,7 +27,7 @@ FasterRcnn proposed that convolution feature maps based on region detectors (suc
[Paper](https://arxiv.org/abs/1506.01497): Ren S , He K , Girshick R , et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6).
#Model Architecture
# Model Architecture
FasterRcnn is a two-stage target detection network,This network uses a region proposal network (RPN), which can share the convolution features of the whole image with the detection network, so that the calculation of region proposal is almost cost free. The whole network further combines RPN and FastRcnn into a network by sharing the convolution features.
@ -42,7 +42,7 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
- Data formatimage and json files
- NoteData will be processed in dataset.py
#Environment Requirements
# Environment Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
@ -87,6 +87,8 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
After installing MindSpore via the official website, you can start training and evaluation as follows:
Note: 1.the first run will generate the mindeocrd file, which will take a long time. 2. pretrained model is a resnet50 checkpoint that trained over ImageNet2012. 3. VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained.
```
# standalone training
sh run_standalone_train_ascend.sh [PRETRAINED_MODEL]

View File

@ -97,7 +97,7 @@ class Rcnn(nn.Cell):
self.relu = P.ReLU()
self.logicaland = P.LogicalAnd()
self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
self.loss_bbox = P.SmoothL1Loss(sigma=1.0)
self.loss_bbox = P.SmoothL1Loss(beta=1.0)
self.reshape = P.Reshape()
self.onehot = P.OneHot()
self.greater = P.Greater()

View File

@ -137,7 +137,7 @@ class RPN(nn.Cell):
self.CheckValid = P.CheckValid()
self.sum_loss = P.ReduceSum()
self.loss_cls = P.SigmoidCrossEntropyWithLogits()
self.loss_bbox = P.SmoothL1Loss(sigma=1.0/9.0)
self.loss_bbox = P.SmoothL1Loss(beta=1.0/9.0)
self.squeeze = P.Squeeze()
self.cast = P.Cast()
self.tile = P.Tile()

View File

@ -151,7 +151,7 @@ def _build_training_pipeline(config: TransformerConfig,
if dataset is None:
raise ValueError("pre-training dataset or fine-tuning dataset must be provided one.")
update_steps = dataset.get_repeat_count() * dataset.get_dataset_size()
update_steps = config.epochs * dataset.get_dataset_size()
if config.lr_scheduler == "isr":
lr = Tensor(square_root_schedule(lr=config.lr,
update_num=update_steps,
@ -331,7 +331,8 @@ if __name__ == '__main__':
mode=context.GRAPH_MODE,
device_target=args.platform,
reserve_class_name_in_scope=False,
device_id=device_id)
device_id=device_id,
max_call_depth=2000)
_rank_size = os.getenv('RANK_SIZE')