forked from mindspore-Ecosystem/mindspore
add cn docs for some apis
This commit is contained in:
parent
0f620a4bfd
commit
9280c1182b
|
@ -362,6 +362,7 @@ Dynamic LR函数
|
|||
mindspore.nn.PixelShuffle
|
||||
mindspore.nn.PixelUnshuffle
|
||||
mindspore.nn.ResizeBilinear
|
||||
mindspore.nn.Upsample
|
||||
|
||||
工具
|
||||
-----
|
||||
|
|
|
@ -481,6 +481,7 @@ Array操作
|
|||
mindspore.ops.Col2Im
|
||||
mindspore.ops.Concat
|
||||
mindspore.ops.ConjugateTranspose
|
||||
mindspore.ops.CountNonZero
|
||||
mindspore.ops.Cummax
|
||||
mindspore.ops.Cummin
|
||||
mindspore.ops.CumProd
|
||||
|
|
|
@ -189,6 +189,9 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.atan
|
||||
mindspore.ops.atan2
|
||||
mindspore.ops.atanh
|
||||
mindspore.ops.atleast_1d
|
||||
mindspore.ops.atleast_2d
|
||||
mindspore.ops.atleast_3d
|
||||
mindspore.ops.bessel_i0
|
||||
mindspore.ops.bessel_i0e
|
||||
mindspore.ops.bessel_i1
|
||||
|
@ -209,11 +212,13 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.ceil
|
||||
mindspore.ops.clamp
|
||||
mindspore.ops.clip
|
||||
mindspore.ops.combinations
|
||||
mindspore.ops.copysign
|
||||
mindspore.ops.cos
|
||||
mindspore.ops.cosh
|
||||
mindspore.ops.cosine_similarity
|
||||
mindspore.ops.cov
|
||||
mindspore.ops.diag_embed
|
||||
mindspore.ops.diff
|
||||
mindspore.ops.deg2rad
|
||||
mindspore.ops.digamma
|
||||
|
@ -257,10 +262,13 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.mul
|
||||
mindspore.ops.multiply
|
||||
mindspore.ops.mvlgamma
|
||||
mindspore.ops.nanquantile
|
||||
mindspore.ops.neg
|
||||
mindspore.ops.negative
|
||||
mindspore.ops.polygamma
|
||||
mindspore.ops.positive
|
||||
mindspore.ops.pow
|
||||
mindspore.ops.quantile
|
||||
mindspore.ops.rad2deg
|
||||
mindspore.ops.ravel
|
||||
mindspore.ops.real
|
||||
|
@ -284,6 +292,8 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.tan
|
||||
mindspore.ops.tanhshrink
|
||||
mindspore.ops.trapz
|
||||
mindspore.ops.tril_indices
|
||||
mindspore.ops.triu_indices
|
||||
mindspore.ops.true_divide
|
||||
mindspore.ops.trunc
|
||||
mindspore.ops.truncate_div
|
||||
|
@ -302,12 +312,15 @@ Reduction函数
|
|||
mindspore.ops.all
|
||||
mindspore.ops.amax
|
||||
mindspore.ops.amin
|
||||
mindspore.ops.aminmax
|
||||
mindspore.ops.any
|
||||
mindspore.ops.argmax
|
||||
mindspore.ops.argmin
|
||||
mindspore.ops.cummax
|
||||
mindspore.ops.cummin
|
||||
mindspore.ops.cumsum
|
||||
mindspore.ops.fmax
|
||||
mindspore.ops.fmin
|
||||
mindspore.ops.logsumexp
|
||||
mindspore.ops.max
|
||||
mindspore.ops.mean
|
||||
|
@ -485,6 +498,7 @@ Array操作
|
|||
mindspore.ops.diagonal
|
||||
mindspore.ops.dyn_shape
|
||||
mindspore.ops.dsplit
|
||||
mindspore.ops.dstack
|
||||
mindspore.ops.einsum
|
||||
mindspore.ops.expand
|
||||
mindspore.ops.expand_dims
|
||||
|
@ -530,6 +544,7 @@ Array操作
|
|||
mindspore.ops.shuffle
|
||||
mindspore.ops.size
|
||||
mindspore.ops.slice
|
||||
mindspore.ops.sort
|
||||
mindspore.ops.space_to_batch_nd
|
||||
mindspore.ops.sparse_segment_mean
|
||||
mindspore.ops.split
|
||||
|
@ -562,6 +577,7 @@ Array操作
|
|||
mindspore.ops.unstack
|
||||
mindspore.ops.view_as_real
|
||||
mindspore.ops.vsplit
|
||||
mindspore.ops.vstack
|
||||
mindspore.ops.where
|
||||
mindspore.ops.cross
|
||||
mindspore.ops.cumprod
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.PoissonNLLLoss
|
||||
============================
|
||||
|
||||
.. py:class:: mindspore.nn.PoissonNLLLoss(log_input=True, full=False, eps=1e-8, reduction='mean')
|
||||
.. py:class:: mindspore.nn.PoissonNLLLoss(log_input=True, full=False, eps=1e-08, reduction='mean')
|
||||
|
||||
计算泊松负对数似然损失。
|
||||
|
||||
|
@ -25,7 +25,7 @@ mindspore.nn.PoissonNLLLoss
|
|||
参数:
|
||||
- **log_input** (bool,可选) - 是否使用对数输入。默认值:True。
|
||||
- **full** (bool,可选) - 是否在损失计算中包括斯特林近似项。默认值:False。
|
||||
- **eps** (float,可选) - 算对数时 `x` 的下界。默认值:1e-8。
|
||||
- **eps** (float,可选) - 算对数时 `x` 的下界。默认值:1e-08。
|
||||
- **reduction** (str,可选) - 指定要应用于输出的缩减方式,取值为'none'、'mean'或'sum'。默认值:'mean'。
|
||||
|
||||
输入:
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
mindspore.nn.Upsample
|
||||
=====================
|
||||
|
||||
.. py:class:: mindspore.nn.Upsample(size=None, scale_factor=None, mode="nearest", align_corners=None)
|
||||
|
||||
根据指定的 `size` 或 `scale_factor` 对Tensor进行采样,过程使用上采样算法。
|
||||
|
||||
必须指定 `size` 或 `scale_factor` 中的一个值,并且不能同时指定两者。
|
||||
|
||||
参数:
|
||||
- **size** (Union(int, tuple[int], list[int]),可选) - 采样尺寸。可以是含有一个、两个或三个元素的list或者tuple。如果包含三个元素,则分别表示 :math:`([new\_depth], [new\_height], new\_width)` 。 `size` 和 `scale_factor` 有且只有一个可以被设为None。目前该参数仅支持设为None。默认值:None。
|
||||
- **scale_factor** (Union(float, tuple[float], list[float]),可选) - 采样Tensor的缩放因子,值为正整数。 `size` 和 `scale_factor` 有且只有一个可以被设为None。目前该参数仅支持设为None。默认值:None。
|
||||
- **mode** (str,可选) - 指定的上采样算法。可选值为:'nearest'、'linear' (仅支持3D输入)、 'bilinear'、'bicubic' (仅支持4D输入)、'trilinear' (仅支持5D输入)。默认值:'nearest'。
|
||||
- **align_corners** (bool,可选) - 如果为True,使用 :math:`(new\_height - 1) / (height - 1)` 对输入进行缩放使输入数据和缩放后数据的角落对齐。如果为False,则使用 :math:`new\_height / height` 进行缩放。默认值:None,此时不指定 `align_corners` ,赋值为False。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - 进行尺寸调整的Tensor。输入必须为3-D、4-D或5-D。其数据格式为: :math:`(batch, channels, depth(4-D或5-D才有此维度), height(5-D才有此维度), width)` 。数据类型为float16或float32。
|
||||
|
||||
输出:
|
||||
Tensor。维度为3-D、4-D或5-D,数据类型与 `x` 相同。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `mode` 不是'nearest'、'linear'、'bilinear'、'bicubic'或'trilinear'。
|
||||
- **TypeError** - `size` 不是list、tuple或None。
|
||||
- **TypeError** - `scale_factor` 不为int或None。
|
||||
- **TypeError** - `align_corners` 不是bool。
|
||||
- **TypeError** - `x` 的数据类型不是float16或float32。
|
||||
- **ValueError** - `size` 和 `scale_factor` 同时为None或同时不为None。
|
||||
- **ValueError** - `x` 或 `size` 与 `mode` 不匹配。
|
||||
- **ValueError** - `scale_factor` 小于零。
|
||||
- **ValueError** - `size` 的长度和 `mode` 不匹配。
|
|
@ -5,4 +5,4 @@
|
|||
|
||||
逐元素计算输入Tensor的绝对值。
|
||||
|
||||
更多详情请查看: :class:`mindspore.ops.abs` 。
|
||||
更多详情请查看: :class:`mindspore.ops.abs` 。
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.ops.CountNonZero
|
||||
==========================
|
||||
|
||||
.. py:class:: mindspore.ops.CountNonZero
|
||||
|
||||
计算输入Tensor指定轴上的非零元素的数量。
|
||||
|
||||
更多详情请查看: :func:`mindspore.ops.count_nonzero` 。
|
|
@ -3,23 +3,6 @@ mindspore.ops.TrilIndices
|
|||
|
||||
.. py:class:: mindspore.ops.TrilIndices(row, col, offset=0, dtype=mstype.int32)
|
||||
|
||||
返回一个包含 `row` * `col` 的矩阵的下三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
|
||||
计算 `row` * `col` 行列矩阵的下三角元素的索引,并将它们作为一个 2xN 的Tensor返回。
|
||||
|
||||
矩阵的下三角形部分定义为对角线本身和对角线以下的元素。
|
||||
|
||||
.. note::
|
||||
在CUDA上运行的时候, `row` * `col` 必须小于2^59以防止计算时溢出。
|
||||
|
||||
参数:
|
||||
- **row** (int) - 2-D 矩阵的行数。
|
||||
- **col** (int) - 2-D 矩阵的列数。
|
||||
- **offset** (int, 可选) - 对角线偏移量。默认值:0。
|
||||
- **dtype** (:class:`mindspore.dtype`, 可选) - 指定输出Tensor数据类型,支持的数据类型为 `mstype.int32` 和 `mstype.int64` ,默认值: `mstype.int32` 。
|
||||
|
||||
输出:
|
||||
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定,shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `row` 、 `col` 或 `offset` 不是int。
|
||||
- **TypeError** - 如果 `dtype` 的类型不是int32或int64。
|
||||
- **ValueError** - 如果 `row` 或者 `col` 小于零。
|
||||
更多参考详见 :func:`mindspore.ops.tril_indices` 。
|
||||
|
|
|
@ -3,23 +3,6 @@ mindspore.ops.TriuIndices
|
|||
|
||||
.. py:class:: mindspore.ops.TriuIndices(row, col, offset=0, dtype=mstype.int32)
|
||||
|
||||
返回一个包含 `row` * `col` 的矩阵的上三角形部分的索引的Tensor。Tensor的shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。第一行包含所有索引的行坐标,第二行包含列坐标。索引按行排序,然后按列排序。
|
||||
计算 `row` * `col` 行列矩阵的上三角元素的索引,并将它们作为一个 2xN 的Tensor返回。
|
||||
|
||||
矩阵的下三角形部分定义为对角线本身和对角线以上的元素。
|
||||
|
||||
.. note::
|
||||
在CUDA上运行的时候, `row` * `col` 必须小于2^59以防止计算时溢出。
|
||||
|
||||
参数:
|
||||
- **row** (int) - 2-D 矩阵的行数。
|
||||
- **col** (int) - 2-D 矩阵的列数。
|
||||
- **offset** (int,可选) - 对角线偏移量。默认值:0。
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 指定输出Tensor数据类型,支持的数据类型为 `mstype.int32` 和 `mstype.int64` ,默认值: `mstype.int32` 。
|
||||
|
||||
输出:
|
||||
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定,shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `row` 、 `col` 或 `offset` 不是int。
|
||||
- **TypeError** - 如果 `dtype` 的类型不是int32或int64。
|
||||
- **ValueError** - 如果 `row` 或者 `col` 小于零。
|
||||
更多参考详见 :func:`mindspore.ops.triu_indices` 。
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
mindspore.ops.aminmax
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.aminmax(x, *, axis=0, keep_dims=False)
|
||||
|
||||
返回输入Tensor在指定轴上的最小值和最大值。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor,可以是任意维度。设输入Tensor的shape为 :math:`(x_1, x_2, ..., x_N)` 。
|
||||
|
||||
关键字参数:
|
||||
- **axis** (int,可选) - 要进行规约计算的维度。 `axis` 必须在[-rank, rank)范围内,其中 “rank” 是 `x` 的维度。默认值:0。
|
||||
- **keep_dims** (bool,可选) - 是否保留维度。如果为True,则输出shape与输入shape一致,否则移除规约计算的维度 `axis` 。默认值:False。
|
||||
|
||||
返回:
|
||||
tuple (Tensor),包含输入Tensor在指定轴上的最小值和最大值。
|
||||
|
||||
- `keepdims` 为True,输出shape为: :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)` 。
|
||||
- `keepdims` 为False,输出shape为: :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `keepdims` 不是bool类型。
|
||||
- **TypeError** - `axis` 不是int类型。
|
||||
- **ValueError** - `axis` 不在[-rank, rank)范围内。
|
|
@ -6,7 +6,11 @@ mindspore.ops.atan2
|
|||
逐元素计算input/other的反正切值。
|
||||
|
||||
返回 :math:`\theta\ \in\ [-\pi, \pi]` ,使得 :math:`input = r*\sin(\theta), other = r*\cos(\theta)` ,其中 :math:`r = \sqrt{input^2 + other^2}` 。
|
||||
输入 `input` 和 `other` 会通过隐式数据类型转换使数据类型保持一致。如果数据类型不同,低精度的数据类型会被转换到高精度的数据类型。
|
||||
|
||||
.. note::
|
||||
- 参数 `input` 和 `other` 遵循 `隐式类型转换规则 <https://www.mindspore.cn/docs/zh-CN/master/note/operator_list_implicit.html>`_ ,使数据类型保持一致。如果两参数数据类型不一致,则低精度类型会被转换成较高精度类型。
|
||||
- 输入必须是两个Tensor,或一个Tensor和一个Scalar。
|
||||
- 当输入是一个Tensor和一个Scalar时,Scalar只能是一个常数。
|
||||
|
||||
参数:
|
||||
- **input** (Tensor, Number.number) - 输入Tensor或常数,shape: :math:`(N,*)` ,其中 :math:`*` 表示任何数量的附加维度。
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
mindspore.ops.atleast_1d
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.atleast_1d(inputs)
|
||||
|
||||
调整 `inputs` 中的Tensor维度,使输入中每个Tensor维度不低于1。
|
||||
|
||||
Scalar输入被转换为一维Tensor,而高维输入则被保留。
|
||||
|
||||
参数:
|
||||
- **inputs** (Union[Tensor, list[Tensor]]) - 一个或多个输入Tensor。
|
||||
|
||||
返回:
|
||||
Tensor或Tensor列表。如果返回列表,则列表中的每一个元素 `a` 满足: `a`.ndim >= 1。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是一个Tensor或Tensor列表。
|
|
@ -0,0 +1,17 @@
|
|||
mindspore.ops.atleast_2d
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.atleast_2d(inputs)
|
||||
|
||||
调整 `inputs` 中的Tensor维度,使输入中每个Tensor维度不低于2。
|
||||
|
||||
Scalar或一维Tensor被转换为二维Tensor,而高维输入则被保留。
|
||||
|
||||
参数:
|
||||
- **inputs** (Union[Tensor, list[Tensor]]) - 一个或多个输入Tensor。
|
||||
|
||||
返回:
|
||||
Tensor或Tensor列表。如果返回列表,则列表中的每一个元素 `a` 满足: `a`.ndim >= 2。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是一个Tensor或Tensor列表。
|
|
@ -0,0 +1,18 @@
|
|||
mindspore.ops.atleast_3d
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.atleast_3d(inputs)
|
||||
|
||||
调整 `inputs` 中的Tensor维度,使输入中每个Tensor维度不低于3。
|
||||
|
||||
Scalar、一维或二维Tensor被转换为三维Tensor,而高维输入则被保留。
|
||||
|
||||
参数:
|
||||
- **inputs** (Union[Tensor, list[Tensor]]) - 一个或多个输入Tensor。例如,shape为 :math:`(N,)` 的Tensor变成shape为 :math:`(1, N, 1)` 的Tensor,shape为 :math:`(M, N)` 的Tensor变成shape为 :math:`(M, N, 1)` 的Tensor。
|
||||
|
||||
返回:
|
||||
Tensor或Tensor列表。如果返回列表,则列表中的每一个元素 `a` 满足: `a`.ndim >= 3。
|
||||
例如,一个shape为 :math:`(N,)` 的Tensor,操作后shape变成 :math:`(1, N, 1)` ,shape为 :math:`(M, N)` 的2-D Tensor shape变成 :math:`(M, N, 1)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input` 不是一个Tensor或Tensor列表。
|
|
@ -0,0 +1,22 @@
|
|||
mindspore.ops.combinations
|
||||
==========================
|
||||
|
||||
.. py:function:: mindspore.ops.combinations(x, r=2, with_replacement=False)
|
||||
|
||||
返回输入Tensor中元素的所有长度为 `r` 的子序列。
|
||||
|
||||
当 `with_replacement` 设为 `False` ,功能与Python里的 `itertools.combinations` 类似,若设为 `True` ,功能与 `itertools.combinations_with_replacement` 一致。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 一维Tensor。
|
||||
- **r** (int,可选) - 进行组合的元素个数。默认值:2。
|
||||
- **with_replacement** (bool,可选) - 是否允许组合存在重复值。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor,包含输入Tensor元素的左右组合值。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `x` 不是Tensor。
|
||||
- **TypeError** - 如果 `r` 不是int类型。
|
||||
- **TypeError** - 如果 `with_replacement` 不是bool类型。
|
||||
- **ValueError** - 如果 `x` 不是一维。
|
|
@ -3,18 +3,19 @@ mindspore.ops.count_nonzero
|
|||
|
||||
.. py:function:: mindspore.ops.count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32)
|
||||
|
||||
计算输入Tensor指定轴上的非零元素的数量。
|
||||
计算输入Tensor指定轴上的非零元素的数量。如果没有指定维度,则计算Tensor中所有非零元素的数量。
|
||||
|
||||
.. note::
|
||||
`dims` 的值范围是[-x_dims,x_dims)。其中, `x_dims` 是输入 `x` 的维度。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入数据用于统计非零元素。 :math:`(N,*)` ,其中 :math:`*` 表示任意数量的附加维度。
|
||||
- **axis** (Union[int, tuple(int), list(int)]) - 指定计算的维度。只允许为常量。默认值:(),在所有维度进行计算。
|
||||
- **keep_dims** (bool) - 如果为True,则保留计算的维度,且长度为1。如果为False,则不要保留这些维度。默认值:False。
|
||||
- **dtype** (Union[Number, mindspore.bool\_]) - 输出Tensor的数据类型。只允许为常量。默认值:mindspore.int32。
|
||||
- **x** (Tensor) - 要计算的输入,可以是任意维度的Tensor。将输入张量的shape设为 :math:`(x_1, x_2, ..., x_N)` 。
|
||||
- **dims** (Union[int, list(int), tuple(int)],可选) - 要沿其计算非零值数量的维度。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,非零元素的数量。数据类型由 `dtype` 所指定。
|
||||
一个N维Tensor,表示输入Tensor在 `dims` 上的非零元素数量。 `dims` 指定的维度将被规约掉。例如,如果 `x` 的大小为 :math:`(2, 3, 4)` , `dims` 为 :math:`[0, 1]` ,则y_shape将为 :math:`(4,)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `axis` 不是int、tuple或者list。
|
||||
- **ValueError** - `axis` 不在[-x.ndim, x.ndim)范围内。
|
||||
|
||||
- **TypeError** - 如果 `x` 的数据类型不受支持。
|
||||
- **TypeError** - 如果 `dims` 的数据类型不是int。
|
||||
- **ValueError** - 如果 `dims` 中的任何值不在 :math:`[-x_dims,x_dims)` 范围内。
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
mindspore.ops.diag_embed
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.diag_embed(x, offset=0, dim1=-2, dim2=-1)
|
||||
|
||||
生成一个Tensor,其对角线值由 `x` 中的值填充,其余位置置0。如果 `x` 的shape为 :math:`[x_{0}, x_{1}, ..., x_{n-1}, x_{n}]` ,则输出
|
||||
shape为将 :math:`x_{n}+|offset|` 插入 :math:`[x_{0}, x_{1}, ..., x_{n-1}]` 的 `dim1` 和 `dim2` 维后得到的向量。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 对角线填充值。
|
||||
- **offset** (int,可选) - 对角线偏离值。 :math:`offset=0` 为主对角线。
|
||||
|
||||
- 如果 :math:`offset>0` ,填充主对角线上方第 `offset` 条对角线。
|
||||
- 如果 :math:`offset<0` ,填充主对角线下方第 `offset` 条对角线。
|
||||
|
||||
默认值:0。
|
||||
|
||||
- **dim1** (int,可选) - 填充对角线的第一个维度。默认值:-2。
|
||||
- **dim2** (int,可选) - 填充对角线的第二个维度。默认值:-1。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型与 `x` 一致,但输出shape维度比 `x` 高一维。
|
||||
|
||||
- 如果 `keepdims` 为True,则输出shape为: :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)` 。
|
||||
- 否则输出shape为: :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `x` 的数据类型不被支持。
|
||||
- **TypeError** - `offset` 不是int类型。
|
||||
- **TypeError** - `dim1` 或 `dim2` 不是int类型。
|
||||
- **ValueError** - `x` 的维度不是1D-6D。
|
||||
- **ValueError** - `dim1` 不在[-len(x.shape), len(x.shape))范围内。
|
||||
- **ValueError** - `dim2` 不在[-len(x.shape), len(x.shape))范围内。
|
||||
- **ValueError** - `dim1` 和 `dim2` 相等。
|
|
@ -0,0 +1,20 @@
|
|||
mindspore.ops.dstack
|
||||
====================
|
||||
|
||||
.. py:function:: mindspore.ops.dstack(inputs)
|
||||
|
||||
将多个Tensor沿着深度方向进行堆叠。
|
||||
|
||||
相当于将输入沿着第三个轴进行拼接。
|
||||
1-D Tensor :math:`(N,)` 重新排列为 :math:`(1,N,1)` ,2-D Tensor :math:`(M,N)` 重新排列为 :math:`(M,N,1)` 。
|
||||
|
||||
参数:
|
||||
- **inputs** (Union(List[Tensor], Tuple[Tensor])) - 一个Tensor序列。除了第三个轴外,所有的
|
||||
Tensor必须有相同的shape。如果是1-D或2-D的Tensor,则它们的shape必须相同。
|
||||
|
||||
返回:
|
||||
堆叠后的Tensor,其维度至少为3。输出shape与 `numpy.dstack()` 类似。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `inputs` 不是list或tuple。
|
||||
- **ValueError** - 如果 `inputs` 为空。
|
|
@ -0,0 +1,26 @@
|
|||
mindspore.ops.fmax
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.fmax(x1, x2)
|
||||
|
||||
逐元素计算输入Tensor的最大值。
|
||||
|
||||
.. math::
|
||||
output_i = max(x1_i, x2_i)
|
||||
|
||||
.. note::
|
||||
- 输入 `x1` 和 `x2` 遵循隐式转换法则使数据类型一致。
|
||||
- 输入 `x1` 和 `x2` 的shape必须能相互广播。
|
||||
- 如果其中一个比较值是NaN,则返回另一个比较值。
|
||||
|
||||
参数:
|
||||
- **x1** (Tensor) - 第一个输入Tensor,支持的数据类型有: float16、float32、 float64、 int32、 int64。
|
||||
- **x2** (Tensor) - 第二个输入Tensor,支持的数据类型有: float16、 float32、 float64、 int32、 int64。
|
||||
|
||||
返回:
|
||||
Tensor。其shape与两个输入广播之后的shape相同,数据类型为隐式转换后精度较高的数据类型。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x1` 或 `x2` 不是Tensor。
|
||||
- **TypeError** - `x1` 或 `x2` 的数据类型不是以下数据类型之一:float16、 float32、 float64、 int32、 int64。
|
||||
- **ValueError** - `x1` 和 `x2` 的shape不能广播。
|
|
@ -0,0 +1,26 @@
|
|||
mindspore.ops.fmin
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.fmin(x1, x2)
|
||||
|
||||
逐元素计算输入Tensor的最小值。
|
||||
|
||||
.. math::
|
||||
output_i = min(x1_i, x2_i)
|
||||
|
||||
.. note::
|
||||
- 输入 `x1` 和 `x2` 遵循隐式转换法则使数据类型一致。
|
||||
- 输入 `x1` 和 `x2` 的shape必须能相互广播。
|
||||
- 如果其中一个比较值是NaN,则返回另一个比较值。
|
||||
|
||||
参数:
|
||||
- **x1** (Tensor) - 第一个输入Tensor,支持的数据类型有: float16、float32、 float64、 int32、 int64。
|
||||
- **x2** (Tensor) - 第二个输入Tensor,支持的数据类型有: float16、 float32、 float64、 int32、 int64。
|
||||
|
||||
返回:
|
||||
Tensor。其shape与两个输入广播之后的shape相同,数据类型为隐式转换后精度较高的数据类型。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x1` 或 `x2` 不是Tensor。
|
||||
- **TypeError** - `x1` 或 `x2` 的数据类型不是以下数据类型之一:float16、 float32、 float64、 int32、 int64。
|
||||
- **ValueError** - `x1` 和 `x2` 的shape不能广播。
|
|
@ -0,0 +1,34 @@
|
|||
mindspore.ops.nanquantile
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.nanquantile(x, q, axis=None, keepdims=False)
|
||||
|
||||
此接口为mindspore.ops.quantile()的变体,计算的时候会忽略NaN值。如果进行规约计算维度的所有值都是NaN,则返回的分位数为NaN。
|
||||
|
||||
详情请参考 :func:`mindspore.ops.quantile` 。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。其shape为 :math:`(x_1, x_2, ..., x_R)` 。支持的数据类型为:float32、float64。
|
||||
- **q** (Union[float, Tensor]) - 标量或1D Tensor。其值范围在[0, 1],支持的数据类型为:float32、float64。
|
||||
- **axis** (int,可选) - 要减少的维度。默认情况下 `axis` 为None,导致输入Tensor在计算前被展平。默认值:None。
|
||||
- **keepdims** (bool,可选) - 输出Tensor是否保留维度。默认值:False。
|
||||
|
||||
返回:
|
||||
输入Tensor,数据类型与 `input` 一致。
|
||||
|
||||
假设 `x` 的shape为 :math:`(m, x_0, x_1, ..., x_i, ..., X_R)` , `axis` = :math:`i` ,m为 `q` 中的总元素个数。
|
||||
|
||||
- 如果 `q` 为标量且 `keepdims` 为True,则输出shape为 :math:`(x_0, x_1, ..., 1, ..., X_R)` 。
|
||||
- 如果 `q` 为标量且 `keepdims` 为False,则输出shape为 :math:`(x_0, x_1, ..., X_R)` 。
|
||||
- 如果 `q` 为1D Tensor且 `keepdims` 为True,则输出shape为 :math:`(m, x_0, x_1, ..., 1, ..., X_R)` 。
|
||||
- 如果 `q` 为1D Tensor且 `keepdims` 为False,则输出shape为 :math:`(m, x_0, x_1, ..., X_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `q` 不是Tensor或float类型。
|
||||
- **TypeError** - `x` 的数据类型float32或float64。
|
||||
- **TypeError** - `q` 的数据类型float32或float64。
|
||||
- **TypeError** - `x` 和 `q` 的数据类型不一致。
|
||||
- **ValueError** - `q` 的值不在[0, 1]范围内。
|
||||
- **ValueError** - `axis` 的值不在有效范围内。
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
mindspore.ops.polygamma
|
||||
=======================
|
||||
|
||||
.. py:function:: mindspore.ops.polygamma(a, x)
|
||||
|
||||
计算关于 `x` 的多伽马函数的 :math:`a` 阶导数。
|
||||
|
||||
.. math::
|
||||
\psi^{(a)}(x) = \frac{d^{(a)}}{dx^{(a)}} \psi(x)
|
||||
|
||||
其中\psi(x)为digamma函数。
|
||||
|
||||
参数:
|
||||
- **a** (tuple) - 多伽马函数求导的阶数,支持的数据类型为int32和int64, `a` 的shape为 :math:`()` 。
|
||||
- **x** (Tensor) - 用于计算多伽马函数的Tensor。
|
||||
|
||||
返回:
|
||||
Tensor。数据类型与 `x` 一致。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `x` 的数据类型不是float16、float32或float64。
|
||||
- **TypeError** - `a` 的数据类型不是int32或int64。
|
||||
- **TypeError** - `a` 的shape不是 :math:`()` 。
|
|
@ -0,0 +1,31 @@
|
|||
mindspore.ops.quantile
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.quantile(x, q, axis=None, keepdims=False)
|
||||
|
||||
计算 `x` 中所有元素的第 `q` 分位数,如果第 `q` 分位数位于两个数据点之间,则返使用线性插值计算结果。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。其shape为 :math:`(x_1, x_2, ..., x_R)` 。支持的数据类型为:float32、float64。
|
||||
- **q** (Union[float, Tensor]) - 标量或1D Tensor。其值范围在[0, 1],支持的数据类型为:float32、float64。
|
||||
- **axis** (int,可选) - 要减少的维度。默认情况下 `axis` 为None,导致输入Tensor在计算前被展平。默认值:None。
|
||||
- **keepdims** (bool,可选) - 输出Tensor是否保留维度。默认值:False。
|
||||
|
||||
返回:
|
||||
输入Tensor,数据类型与 `input` 一致。
|
||||
|
||||
假设 `x` 的shape为 :math:`(m, x_0, x_1, ..., x_i, ..., X_R)` , `axis` = :math:`i` ,m为 `q` 中的总元素个数。
|
||||
|
||||
- 如果 `q` 为标量且 `keepdims` 为True,则输出shape为 :math:`(x_0, x_1, ..., 1, ..., X_R)` 。
|
||||
- 如果 `q` 为标量且 `keepdims` 为False,则输出shape为 :math:`(x_0, x_1, ..., X_R)` 。
|
||||
- 如果 `q` 为1D Tensor且 `keepdims` 为True,则输出shape为 :math:`(m, x_0, x_1, ..., 1, ..., X_R)` 。
|
||||
- 如果 `q` 为1D Tensor且 `keepdims` 为False,则输出shape为 :math:`(m, x_0, x_1, ..., X_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `q` 不是Tensor或float类型。
|
||||
- **TypeError** - `x` 的数据类型float32或float64。
|
||||
- **TypeError** - `q` 的数据类型float32或float64。
|
||||
- **TypeError** - `x` 和 `q` 的数据类型不一致。
|
||||
- **ValueError** - `q` 的值不在[0, 1]范围内。
|
||||
- **ValueError** - `axis` 的值不在有效范围内。
|
|
@ -0,0 +1,24 @@
|
|||
mindspore.ops.sort
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.sort(input_x, axis=-1, descending=False)
|
||||
|
||||
按指定顺序对输入Tensor的指定维上的元素进行排序。
|
||||
|
||||
参数:
|
||||
- **input_x** (Tensor) - 进行排序的Tensor,shape为 :math:`(N,*)` ,其中 :math:`*` 表示任意数量的的额外维度。
|
||||
- **axis** (int,可选) - 进行排序的维度。默认值:-1。
|
||||
- **descending** (bool,可选) - 按降序还是升序。如果为True,则元素按降序排列,否则按升序排列。默认值:False。
|
||||
|
||||
.. warning::
|
||||
目前能良好支持的数据类型有:Float16、UInt8、Int8、Int16、Int32、Int64。如果使用Float32,可能产生精度误差。
|
||||
|
||||
返回:
|
||||
- **y1** (Tensor) - 排序后的值,其shape和数据类型与输入一致。
|
||||
- **y2** (Tensor) - 返回值在原输入Tensor里对应的索引,数据类型为int32。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `axis` 不是int类型。
|
||||
- **TypeError** - `descending` 不是bool类型。
|
||||
- **TypeError** - `input_x` 不是Float16、Float32、UInt8、Int8、Int16、Int32或Int64。
|
||||
- **ValueError** - `axis` 不在[-len(input_x.shape), len(input_x.shape))范围内。
|
|
@ -0,0 +1,26 @@
|
|||
mindspore.ops.tril_indices
|
||||
==========================
|
||||
|
||||
.. py:function:: mindspore.ops.tril_indices(row, col, offset=0, dtype=mstype.int64)
|
||||
|
||||
计算 `row` * `col` 行列矩阵的下三角元素的索引,并将它们作为一个 2xN 的Tensor返回。张量的第一行包含行坐标,第二行包含列坐标。坐标按行排序,然后按列排序。
|
||||
|
||||
矩阵的下三角部分包括对角线及其以下的所有元素。
|
||||
|
||||
.. note::
|
||||
在CUDA上运行的时候, `row` * `col` 必须小于2^59以防止计算时溢出。
|
||||
|
||||
参数:
|
||||
- **row** (int) - 2-D 矩阵的行数。
|
||||
- **col** (int) - 2-D 矩阵的列数。
|
||||
- **offset** (int, 可选) - 对角线偏移量。默认值:0。
|
||||
- **dtype** (:class:`mindspore.dtype` ,可选) - 指定输出Tensor数据类型,支持的数据类型为 `mstype.int32` 和 `mstype.int64` ,默认值: `mstype.int64` 。
|
||||
|
||||
返回:
|
||||
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定,shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为下三角矩阵的元素总数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `row` 、 `col` 或 `offset` 不是int。
|
||||
- **TypeError** - 如果 `dtype` 的类型不是int32或int64。
|
||||
- **ValueError** - 如果 `row` 或者 `col` 小于零。
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
mindspore.ops.triu_indices
|
||||
==========================
|
||||
|
||||
.. py:function:: mindspore.ops.triu_indices(row, col, offset=0, dtype=mstype.int64)
|
||||
|
||||
计算 `row` * `col` 行列矩阵的上三角元素的索引,并将它们作为一个 2xN 的Tensor返回。张量的第一行包含行坐标,第二行包含列坐标。坐标按行排序,然后按列排序。
|
||||
|
||||
矩阵的上三角部分包括对角线及其以上的所有元素。
|
||||
|
||||
.. note::
|
||||
在CUDA上运行的时候, `row` * `col` 必须小于2^59以防止计算时溢出。
|
||||
|
||||
参数:
|
||||
- **row** (int) - 2-D 矩阵的行数。
|
||||
- **col** (int) - 2-D 矩阵的列数。
|
||||
- **offset** (int,可选) - 对角线偏移量。默认值:0。
|
||||
- **dtype** (:class:`mindspore.dtype` ,可选) - 指定输出Tensor数据类型,支持的数据类型为 `mstype.int32` 和 `mstype.int64` ,默认值: `mstype.int64` 。
|
||||
|
||||
返回:
|
||||
- **y** (Tensor) - 矩阵的下三角形部分的索引。数据类型由 `dtype` 指定,shape为 :math:`(2, tril\_size)` ,其中, `tril_size` 为上三角矩阵的元素总数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `row` 、 `col` 或 `offset` 不是int。
|
||||
- **TypeError** - 如果 `dtype` 的类型不是int32或int64。
|
||||
- **ValueError** - 如果 `row` 或者 `col` 小于零。
|
|
@ -0,0 +1,20 @@
|
|||
mindspore.ops.vstack
|
||||
====================
|
||||
|
||||
.. py:function:: mindspore.ops.vstack(inputs)
|
||||
|
||||
将多个Tensor沿着竖直方向进行堆叠。
|
||||
|
||||
相当于将输入沿着第一个轴进行拼接。
|
||||
1-D Tensor :math:`(N,)` 重新排列为 :math:`(1, N)` ,然后沿着第一个轴进行拼接。
|
||||
|
||||
参数:
|
||||
- **inputs** (Union(List[tensor], Tuple[tensor])) - 一个1-D或2-D Tensor序列。除了第一个轴外,所有的
|
||||
Tensor必须有相同的shape。如果是1-DTensor,则它们的shape必须相同。
|
||||
|
||||
返回:
|
||||
堆叠后的Tensor,其维度至少为3。输出shape与 `numpy.vstack()` 类似。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `inputs` 不是list或tuple。
|
||||
- **ValueError** - 如果 `inputs` 为空。
|
|
@ -365,6 +365,7 @@ Image Processing Layer
|
|||
mindspore.nn.PixelShuffle
|
||||
mindspore.nn.PixelUnshuffle
|
||||
mindspore.nn.ResizeBilinear
|
||||
mindspore.nn.Upsample
|
||||
|
||||
Tools
|
||||
-----
|
||||
|
|
|
@ -480,6 +480,7 @@ Array Operation
|
|||
mindspore.ops.Col2Im
|
||||
mindspore.ops.Concat
|
||||
mindspore.ops.ConjugateTranspose
|
||||
mindspore.ops.CountNonZero
|
||||
mindspore.ops.Cummax
|
||||
mindspore.ops.Cummin
|
||||
mindspore.ops.CumProd
|
||||
|
|
|
@ -189,6 +189,9 @@ Element-wise Operations
|
|||
mindspore.ops.atan
|
||||
mindspore.ops.atan2
|
||||
mindspore.ops.atanh
|
||||
mindspore.ops.atleast_1d
|
||||
mindspore.ops.atleast_2d
|
||||
mindspore.ops.atleast_3d
|
||||
mindspore.ops.bessel_i0
|
||||
mindspore.ops.bessel_i0e
|
||||
mindspore.ops.bessel_i1
|
||||
|
@ -209,11 +212,13 @@ Element-wise Operations
|
|||
mindspore.ops.ceil
|
||||
mindspore.ops.clamp
|
||||
mindspore.ops.clip
|
||||
mindspore.ops.combinations
|
||||
mindspore.ops.copysign
|
||||
mindspore.ops.cos
|
||||
mindspore.ops.cosh
|
||||
mindspore.ops.cosine_similarity
|
||||
mindspore.ops.cov
|
||||
mindspore.ops.diag_embed
|
||||
mindspore.ops.diff
|
||||
mindspore.ops.deg2rad
|
||||
mindspore.ops.digamma
|
||||
|
@ -257,10 +262,13 @@ Element-wise Operations
|
|||
mindspore.ops.mul
|
||||
mindspore.ops.multiply
|
||||
mindspore.ops.mvlgamma
|
||||
mindspore.ops.nanquantile
|
||||
mindspore.ops.neg
|
||||
mindspore.ops.negative
|
||||
mindspore.ops.polygamma
|
||||
mindspore.ops.positive
|
||||
mindspore.ops.pow
|
||||
mindspore.ops.quantile
|
||||
mindspore.ops.rad2deg
|
||||
mindspore.ops.ravel
|
||||
mindspore.ops.real
|
||||
|
@ -284,6 +292,8 @@ Element-wise Operations
|
|||
mindspore.ops.tan
|
||||
mindspore.ops.tanhshrink
|
||||
mindspore.ops.trapz
|
||||
mindspore.ops.tril_indices
|
||||
mindspore.ops.triu_indices
|
||||
mindspore.ops.true_divide
|
||||
mindspore.ops.trunc
|
||||
mindspore.ops.truncate_div
|
||||
|
@ -302,12 +312,15 @@ Reduction Functions
|
|||
mindspore.ops.all
|
||||
mindspore.ops.amax
|
||||
mindspore.ops.amin
|
||||
mindspore.ops.aminmax
|
||||
mindspore.ops.any
|
||||
mindspore.ops.argmax
|
||||
mindspore.ops.argmin
|
||||
mindspore.ops.cummax
|
||||
mindspore.ops.cummin
|
||||
mindspore.ops.cumsum
|
||||
mindspore.ops.fmax
|
||||
mindspore.ops.fmin
|
||||
mindspore.ops.logsumexp
|
||||
mindspore.ops.max
|
||||
mindspore.ops.mean
|
||||
|
@ -485,6 +498,7 @@ Array Operation
|
|||
mindspore.ops.diagonal
|
||||
mindspore.ops.dyn_shape
|
||||
mindspore.ops.dsplit
|
||||
mindspore.ops.dstack
|
||||
mindspore.ops.einsum
|
||||
mindspore.ops.expand
|
||||
mindspore.ops.expand_dims
|
||||
|
@ -530,6 +544,7 @@ Array Operation
|
|||
mindspore.ops.shuffle
|
||||
mindspore.ops.size
|
||||
mindspore.ops.slice
|
||||
mindspore.ops.sort
|
||||
mindspore.ops.space_to_batch_nd
|
||||
mindspore.ops.sparse_segment_mean
|
||||
mindspore.ops.split
|
||||
|
@ -562,6 +577,7 @@ Array Operation
|
|||
mindspore.ops.unstack
|
||||
mindspore.ops.view_as_real
|
||||
mindspore.ops.vsplit
|
||||
mindspore.ops.vstack
|
||||
mindspore.ops.where
|
||||
mindspore.ops.cross
|
||||
mindspore.ops.cumprod
|
||||
|
|
|
@ -359,28 +359,34 @@ class Dropout3d(Cell):
|
|||
|
||||
class Upsample(Cell):
|
||||
r"""
|
||||
Samples the input tensor to the given size or scale_factor by using one of the upsampling algorithms.
|
||||
Samples the input tensor to the given `size` or `scale_factor` by using one of the upsampling algorithms.
|
||||
|
||||
Either `size` or `scale_factor` must be spetified, but they cannot be specified at the same time.
|
||||
|
||||
Args:
|
||||
size (Union(int, tuple[int], list[int])): A tuple or list of 1, 2, or 3 int elements
|
||||
`([new\_depth], [new\_height], new\_width)`, the new size of the tensor.
|
||||
One and only one of size and scale_factor can be set to None. Default: None.
|
||||
scale_factor (Union(float, tuple[float], list[float])): The scale factor of new size of the tensor.
|
||||
size (Union(int, tuple[int], list[int]), optional): The sample size of the tensor.
|
||||
A tuple or list of 1, 2, or 3 int elements
|
||||
:math:`([new\_depth], [new\_height], new\_width)`.
|
||||
One and only one of `size` and `scale_factor` can be set to None. Default: None.
|
||||
scale_factor (Union(float, tuple[float], list[float]), optional): The scale factor of new size of the tensor.
|
||||
The value should be positive integer.
|
||||
One and only one of size and scale_factor can be set to None.
|
||||
Default: None. Currently only None is supported.
|
||||
mode (str): One of 'nearest', 'linear' (3D only), 'bilinear', 'bicubic' (4D only) and 'trilinear' (5D only).
|
||||
One and only one of `size` and `scale_factor` can be set to None.
|
||||
Currently only None is supported. Default: None.
|
||||
mode (str, optional): Specified upsampling algorithms.
|
||||
Must be one of 'nearest', 'linear' (3D only), 'bilinear', 'bicubic' (4D only) and 'trilinear' (5D only).
|
||||
Default: 'nearest'.
|
||||
align_corners (bool): If true, rescale input by `(new\_height - 1) / (height - 1)`, which exactly
|
||||
aligns the corners of data and resized data. If false, rescale by `new\_height / height`.
|
||||
Default: False.
|
||||
align_corners (bool, optional): If true, rescale input by
|
||||
:math:`(new\_height - 1) / (height - 1)`, which exactly
|
||||
aligns the corners of data and resized data. If false, rescale by :math:`new\_height / height`.
|
||||
Default: None, in which case `align_corners` is not specified, Fasle is assign to it.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Tensor to be resized. Input tensor must be a 3-D, 4-D, or 5-D tensor with shape
|
||||
`(batch, channels, [optional depth], [optional height], width)`, with data type of float.
|
||||
- **x** (Tensor) - Tensor to be resized. Input tensor must be a 3-D, 4-D, or 5-D. It has a data format:
|
||||
:math:`(batch, channels, depth(4-D or 5-D only), height(5-D only), width)`,
|
||||
with data type of float16 or float32.
|
||||
|
||||
Outputs:
|
||||
Tensor, resized, 3-D, 4-D, or 5-D, the data type is the same as `x`.
|
||||
Tensor, 3-D, 4-D, or 5-D, the data type is the same as `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` is not Tensor.
|
||||
|
@ -391,8 +397,8 @@ class Upsample(Cell):
|
|||
TypeError: If dtype of `x` is neither float16 nor float32.
|
||||
ValueError: If `size` and `scale_factor` are both None or not None.
|
||||
ValueError: If shape of `x` or `size` and `mode` are not match.
|
||||
ValueError: If `scale_factor` is an int which is less than 0.
|
||||
ValueError: If `size` is a list or tuple whose length is not match `mode`.
|
||||
ValueError: If `scale_factor` is negative.
|
||||
ValueError: If length of `size` does not match `mode`.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -155,7 +155,7 @@ from .array_func import (
|
|||
searchsorted,
|
||||
aminmax,
|
||||
count_nonzero,
|
||||
sort,
|
||||
sort
|
||||
)
|
||||
from .parameter_func import (
|
||||
assign,
|
||||
|
|
|
@ -3072,23 +3072,23 @@ def sort(input_x, axis=-1, descending=False):
|
|||
Args:
|
||||
input_x(Tensor): The input tensor to sort.
|
||||
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
axis (int): The dimension to sort along. Default: -1.
|
||||
descending (bool): Controls the sort order. If descending is True then the elements
|
||||
are sorted in descending order by value. Default: False.
|
||||
axis (int, optional): The dimension to sort along. Default: -1.
|
||||
descending (bool, optional): Controls the sort order. If `descending` is True, the elements
|
||||
are sorted in descending order, or else sorted in ascending order. Default: False.
|
||||
|
||||
.. warning::
|
||||
Currently, the data types of Float16, UInt8, Int8, Int16, Int32, Int64 are supported.
|
||||
Currently, the data types of Float16, UInt8, Int8, Int16, Int32, Int64 are well supported.
|
||||
If use Float32, it may cause loss of accuracy.
|
||||
|
||||
Returns:
|
||||
y1(Tensor) - A tensor whose values are the sorted values, with the same shape and data type as input.
|
||||
y2(Tensor) - The indices of the elements in the original input tensor. Data type is int32.
|
||||
y1(Tensor): A tensor whose values are the sorted values, with the same shape and data type as input.
|
||||
y2(Tensor): The indices of the elements in the original input tensor. Data type is int32.
|
||||
|
||||
Raises:
|
||||
TypeError: If `axis` is not an int.
|
||||
TypeError: If `descending` is not a bool.
|
||||
TypeError: If dtype of `x` is neither float16, float32, uint8, int8, int16, int32, int64.
|
||||
ValueError: If `axis` is not in range of [-len(x.shape), len(x.shape)).
|
||||
TypeError: If dtype of `input_x` is neither float16, float32, uint8, int8, int16, int32, int64.
|
||||
ValueError: If `axis` is not in range of [-len(input_x.shape), len(input_x.shape)).
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -5543,27 +5543,24 @@ def min(x, axis=0, keep_dims=False):
|
|||
|
||||
def aminmax(x, *, axis=0, keepdims=False):
|
||||
"""
|
||||
Calculates the minimum value and maximum values.
|
||||
|
||||
Calculates the minimum value and maximum values along with the given axis for the input tensor.
|
||||
It returns the minimum values and maximum values.
|
||||
|
||||
.. warning::
|
||||
- The value range of "axis" is [-rank, rank). "rank" is the dimension length of "x".
|
||||
It returns the minimum and maximum value along the given axis of input tensor.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor, can be any dimension. Set the shape of input tensor as
|
||||
:math:`(x_1, x_2, ..., x_N)` .
|
||||
axis (int): The dimension to reduce. Default: 0.
|
||||
keepdims (bool): Whether to reduce dimension, if true the output will keep the same dimension as the input,
|
||||
the output will reduce dimension if false. Default: False.
|
||||
|
||||
Keyword Args:
|
||||
axis (int, optional): The dimension to reduce. The value range of `axis` is [-rank, rank),
|
||||
where "rank" is the dimension of `x`. Default: 0.
|
||||
keepdims (bool, optional): Whether to maintain dimension. When set to True, the output will keep the same
|
||||
dimension as the input, or the dimension specified by `axis` is reduced. Default: False.
|
||||
|
||||
Returns:
|
||||
tuple (Tensor), tuple of 2 tensors, containing the minimum value and maximum value of the input tensor.
|
||||
tuple (Tensor), containing the minimum value and maximum value of the input tensor.
|
||||
|
||||
- If `keepdims` is true, the shape of output tensors is
|
||||
- If `keepdims` is True, the shape of output tensors is
|
||||
:math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`.
|
||||
Otherwise, the shape is
|
||||
- If `keepdims` is False, the shape of output tensors is
|
||||
:math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
||||
Raises:
|
||||
|
@ -6369,27 +6366,28 @@ def moveaxis(x, source, destination):
|
|||
|
||||
def count_nonzero(x, dims=None):
|
||||
"""
|
||||
Counts the number of non-zero values in the input tensor along the given dims.
|
||||
If no dim is specified then all non-zeros in the tensor are counted.
|
||||
Calculates the total number of non-zero entries in the input tensor along the
|
||||
specified dimensions. If no dimensions are given, then the function will
|
||||
count all non-zero entries in the tensor.
|
||||
|
||||
Note:
|
||||
The value range of "dims" is [-x_dims, x_dims). "x_dims" is the dimension length of input "x".
|
||||
The value range of `dims` is [-x_dims, x_dims), `x_dims` is the dimension length of input "x".
|
||||
|
||||
Args:
|
||||
x (Tensor): Input to be computed, a N-D Tensor, can be any dimension. Set the shape of input tensor as
|
||||
x (Tensor): Input to be computed, Tensor of any dimension. Set the shape of input tensor as
|
||||
:math:`(x_1, x_2, ..., x_N)` .
|
||||
dims (int, list[int], tuple[int]): The dimension to count the number of non-zero values along.
|
||||
dims (Union[int, list(int), tuple(int)], optional): The dimension to count the number of non-zero values along.
|
||||
Default: None.
|
||||
|
||||
Returns:
|
||||
A N-D Tensor, represents the number of the nonzero elements of the input tensor along the dims.
|
||||
Reduces x_shape along the dimensions given in dims. For example, if the size of x is (2, 3, 4),
|
||||
dims is [0, 1], y_shape will be (4,).
|
||||
A N-D Tensor, represents the number of the nonzero elements of the input tensor along the `dims`.
|
||||
Reduces x_shape along the dimensions given in `dims`. For example, if the size of `x` is :math:`(2, 3, 4)`,
|
||||
`dims` is :math:`[0, 1]`, y_shape will be :math:`(4,)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data type of `x` is not support.
|
||||
TypeError: If the data type of `x` is not supported.
|
||||
TypeError: If the data type of `dims` is not int.
|
||||
ValueError: If any of the values of `dims` is not in [-x_dims, x_dims).
|
||||
ValueError: If any of the values of `dims` is not in range :math:`[-x_dims, x_dims)`.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
|
|
@ -2550,9 +2550,12 @@ def atan2(input, other):
|
|||
It returns :math:`\theta\ \in\ [-\pi, \pi]`
|
||||
such that :math:`input = r*\sin(\theta), other = r*\cos(\theta)`, where :math:`r = \sqrt{input^2 + other^2}`.
|
||||
|
||||
Args of `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, the lower precision data type will be converted to relatively the
|
||||
highest precision data type.
|
||||
.. note::
|
||||
- Arg `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, the lower precision data type will be converted to relatively the
|
||||
highest precision data type.
|
||||
- The inputs must be two tensors or one tensor and one scalar.
|
||||
- When the inputs are one tensor and one scalar, the scalar could only be a constant.
|
||||
|
||||
Args:
|
||||
input (Tensor, Number.number): The input tensor or scalar.
|
||||
|
@ -4206,28 +4209,26 @@ def fmax(x1, x2):
|
|||
r"""
|
||||
Computes the maximum of input tensors element-wise.
|
||||
|
||||
Note:
|
||||
- Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
|
||||
- The inputs must be two tensors.
|
||||
- Types of them are one of the following: float16, float32, float64, int32, int64.
|
||||
- Shapes of them are supposed to be broadcast.
|
||||
- If one of the elements to be compared is NaN, another element is returned.
|
||||
|
||||
.. math::
|
||||
output_i = max(x1_i, x2_i)
|
||||
|
||||
Note:
|
||||
- Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
|
||||
- Shapes of `x1` and `x2` should be able to broadcast.
|
||||
- If one of the elements to be compared is NaN, another element is returned.
|
||||
|
||||
Args:
|
||||
x1 (Tensor): The first input is a tensor whose data type is number.
|
||||
x2 (Tensor): The second input is is a tensor whose data type is number.
|
||||
x1 (Tensor): The first tensor. The supported dtypes are: float16, float32, float64, int32, int64.
|
||||
x2 (Tensor): The second tensor. The supported dtypes are: float16, float32, float64, int32, int64.
|
||||
|
||||
Returns:
|
||||
A Tensor, the shape is the same as the one after broadcasting,
|
||||
and the data type is the one with higher precision or higher digits among the two inputs.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x1` and `x2` is not Tensor.
|
||||
TypeError: If dtype of `x1` and 'x2' is not one of: float16, float32, float64, int32, int64.
|
||||
ValueError: If `x1` and `x2` are not the same shape after broadcast.
|
||||
TypeError: If `x1` or `x2` is not Tensor.
|
||||
TypeError: If dtype of `x1` or `x2` is not one of: float16, float32, float64, int32, int64.
|
||||
ValueError: If the shape of `x1` and `x2` can not broadcast.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
@ -4298,28 +4299,26 @@ def fmin(x1, x2):
|
|||
r"""
|
||||
Computes the minimum of input tensors element-wise.
|
||||
|
||||
Note:
|
||||
- Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
|
||||
- The inputs must be two tensors.
|
||||
- Types of them are one of the following: float16, float32, float64, int32, int64.
|
||||
- Shapes of them are supposed to be broadcast.
|
||||
- If one of the elements to be compared is NaN, another element is returned.
|
||||
|
||||
.. math::
|
||||
output_i = min(x1_i, x2_i)
|
||||
|
||||
Note:
|
||||
- Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
|
||||
- Shapes of `x1` and `x2` should be able to broadcast.
|
||||
- If one of the elements to be compared is NaN, another element is returned.
|
||||
|
||||
Args:
|
||||
x1 (Tensor): The first input is a tensor whose data type is number.
|
||||
x2 (Tensor): The second input is is a tensor whose data type is number.
|
||||
x1 (Tensor): The first tensor. The supported dtypes are: float16, float32, float64, int32, int64.
|
||||
x2 (Tensor): The second tensor. The supported dtypes are: float16, float32, float64, int32, int64.
|
||||
|
||||
Returns:
|
||||
A Tensor, the shape is the same as the one after broadcasting,
|
||||
and the data type is the one with higher precision or higher digits among the two inputs.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x1` and `x2` is not Tensor.
|
||||
TypeError: If dtype of `x1` and 'x2' is not one of: float16, float32, float64, int32, int64.
|
||||
ValueError: If `x1` and `x2` are not the same shape after broadcast.
|
||||
TypeError: If `x1` or `x2` is not Tensor.
|
||||
TypeError: If dtype of `x1` or `x2` is not one of: float16, float32, float64, int32, int64.
|
||||
ValueError: If the shape of `x1` and `x2` can not broadcast.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
@ -5968,18 +5967,18 @@ def block_diag(*inputs):
|
|||
|
||||
def atleast_1d(inputs):
|
||||
r"""
|
||||
Converts `inputs` to arrays with at least one dimension.
|
||||
Reshapes Tensor in `inputs`, every Tensor has at least one dimension after this operation.
|
||||
|
||||
Scalar `inputs` are converted to 1-dimensional arrays, whilst higher-dimensional `inputs` are preserved.
|
||||
Scalar is converted to a 1-D Tensor, input tensor with one or more dimensions will be returned as it is.
|
||||
|
||||
Args:
|
||||
inputs (Union[Tensor, List[Tensor]]): One or more input tensors.
|
||||
inputs (Union[Tensor, list[Tensor]]): One or more input tensors.
|
||||
|
||||
Returns:
|
||||
Tensor or list of tensors, each with ``a.ndim >= 1``.
|
||||
Tensor or list[Tensor]. If returned a list, every element `a` in that list satisfies: `a`.ndim >= 1.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a tensor or a list of tensors.
|
||||
TypeError: If the `input` is not a tensor or a list of tensors.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -6007,14 +6006,14 @@ def atleast_1d(inputs):
|
|||
|
||||
def dstack(inputs):
|
||||
r"""
|
||||
Stacks tensors in sequence depth wise (along the third axis).
|
||||
Stacks tensors in sequence depth wise.
|
||||
|
||||
This is equivalent to concatenation along the third axis.
|
||||
1-D tensors :math:`(N,)` should be reshaped to :math:`(1,N,1)`.
|
||||
2-D tensors :math:`(M,N)` should be reshaped to :math:`(M,N,1)` before concatenation.
|
||||
|
||||
Args:
|
||||
inputs (Union(List[tensor], Tuple[tensor])): A sequence of tensors.
|
||||
inputs (Union(List[Tensor], Tuple[Tensor])): A sequence of tensors.
|
||||
The tensors must have the same shape along all but the third axis.
|
||||
1-D or 2-D tensors must have the same shape.
|
||||
|
||||
|
@ -6030,13 +6029,16 @@ def dstack(inputs):
|
|||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x1 = Tensor([1., 2., 3.])
|
||||
>>> x2 = Tensor([4., 5., 6.])
|
||||
>>> x1 = Tensor(np.arange(1, 7).reshape(2, 3))
|
||||
>>> x2 = Tensor(np.arange(7, 13).reshape(2, 3))
|
||||
>>> out = ops.dstack([x1, x2])
|
||||
>>> print(out.asnumpy())
|
||||
[[[1. 4.]
|
||||
[2. 5.]
|
||||
[3. 6.]]]
|
||||
[[[ 1. 7.]
|
||||
[ 2. 8.]
|
||||
[ 3. 9.]]
|
||||
[[ 4. 10.]
|
||||
[ 5. 11.]
|
||||
[ 6. 12.]]]
|
||||
"""
|
||||
if not isinstance(inputs, (tuple, list)):
|
||||
raise TypeError(f"For 'dstack', 'diff', 'inputs' must be list or tuple of tensors, but got {type(inputs)}")
|
||||
|
@ -6134,11 +6136,12 @@ def diff(x, n=1, axis=-1, prepend=None, append=None):
|
|||
|
||||
def tril_indices(row, col, offset=0, dtype=mstype.int64):
|
||||
r"""
|
||||
Returns the indices of the lower triangular part of a row-by- col matrix in a 2-by-N Tensor,
|
||||
where the first row contains row coordinates of all indices and the second row contains column coordinates.
|
||||
Indices are ordered based on rows and then columns.
|
||||
Calculates the indices of the lower triangular elements in a `row` * `col` matrix
|
||||
and returns them as a 2-by-N Tensor. The first row of the Tensor contains
|
||||
row coordinates, and the second row contains column coordinates. The coordinates are
|
||||
sorted by row and then by column.
|
||||
|
||||
The lower triangular part of the matrix is defined as the elements on and below the diagonal.
|
||||
The lower triangular part of the matrix consists of all elements on and below the diagonal.
|
||||
|
||||
Note:
|
||||
When running on CUDA, row * col must be less than 2^59 to prevent overflow during calculation.
|
||||
|
@ -6146,9 +6149,9 @@ def tril_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
Args:
|
||||
row (int): number of rows in the 2-D matrix.
|
||||
col (int): number of columns in the 2-D matrix.
|
||||
offset (int): diagonal offset from the main diagonal. Default: 0.
|
||||
offset (int, optional): diagonal offset from the main diagonal. Default: 0.
|
||||
dtype (:class:`mindspore.dtype`): The specified type of output tensor.
|
||||
An optional data type of `mindspore.int32` and `mindspore.int64`. Default: `mindspore.int32`.
|
||||
An optional data type of `mindspore.int32` and `mindspore.int64`. Default: `mindspore.int64`.
|
||||
|
||||
Returns:
|
||||
- **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type is specified by `dtype`.
|
||||
|
@ -6166,8 +6169,8 @@ def tril_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
Examples:
|
||||
>>> output = ops.tril_indices(4, 3, -1, mindspore.int64)
|
||||
>>> print(output)
|
||||
[[1 2 2 3 3 3]
|
||||
[0 0 1 0 1 2]]
|
||||
[[2 3 3]
|
||||
[0 0 1]]
|
||||
>>> print(output.dtype)
|
||||
Int64
|
||||
"""
|
||||
|
@ -6178,11 +6181,12 @@ def tril_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
|
||||
def triu_indices(row, col, offset=0, dtype=mstype.int64):
|
||||
r"""
|
||||
Returns the indices of the upper triangular part of a row by col matrix in a 2-by-N Tensor,
|
||||
where the first row contains row coordinates of all indices and the second row contains column coordinates.
|
||||
Indices are ordered based on rows and then columns.
|
||||
Calculates the indices of the upper triangular elements in a `row` * `col` matrix
|
||||
and returns them as a 2-by-N Tensor. The first row of the Tensor contains
|
||||
row coordinates, and the second row contains column coordinates. The coordinates are
|
||||
sorted by row and then by column.
|
||||
|
||||
The upper triangular part of the matrix is defined as the elements on and above the diagonal.
|
||||
The upper triangular part of the matrix consists of all elements on and above the diagonal.
|
||||
|
||||
Note:
|
||||
When running on CUDA, row * col must be less than 2^59 to prevent overflow during calculation.
|
||||
|
@ -6190,9 +6194,9 @@ def triu_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
Args:
|
||||
row (int): number of rows in the 2-D matrix.
|
||||
col (int): number of columns in the 2-D matrix.
|
||||
offset (int): diagonal offset from the main diagonal. Default: 0.
|
||||
offset (int, optional): diagonal offset from the main diagonal. Default: 0.
|
||||
dtype (:class:`mindspore.dtype`): The specified type of output tensor.
|
||||
An optional data type of `mindspore.int32` and `mindspore.int64`. Default: `mindspore.int32`.
|
||||
An optional data type of `mindspore.int32` and `mindspore.int64`. Default: `mindspore.int64`.
|
||||
|
||||
Returns:
|
||||
- **y** (Tensor) - indices of the elements in upper triangular part of matrix. The type is specified by `dtype`.
|
||||
|
@ -6208,7 +6212,7 @@ def triu_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> output = ops.triu_indices(5, 4, 2, mindspore.int64)
|
||||
>>> output = ops.triu_indices(4, 4, 2, mindspore.int64)
|
||||
>>> print(output)
|
||||
[[0 0 1]
|
||||
[2 3 3]]
|
||||
|
@ -6222,17 +6226,18 @@ def triu_indices(row, col, offset=0, dtype=mstype.int64):
|
|||
|
||||
def atleast_2d(inputs):
|
||||
r"""
|
||||
Reshapes `inputs` as arrays with at least two dimensions.
|
||||
Input tensor with two or more dimensions will be returned as is.
|
||||
Reshapes Tensor in `inputs`, every Tensor has at least 2 dimension after this operation.
|
||||
|
||||
Scalar or 1-D Tensor is converted to 2-D Tensor, tensor with higher dimensions will be returned as it is.
|
||||
|
||||
Args:
|
||||
inputs (Union[tensor, List[tensor]]): one or more input tensors.
|
||||
inputs (Union[Tensor, list[Tensor]]): One or more input tensors.
|
||||
|
||||
Returns:
|
||||
Tensor or list of tensors, each with ``a.ndim >= 2``.
|
||||
Tensor or list[Tensor]. If returned a list, every element `a` in that list satisfies: `a`.ndim >= 2.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a tensor or a list of tensors.
|
||||
TypeError: If the `input` is not a tensor or a list of tensors.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -6300,19 +6305,21 @@ def cartesian_prod(*inputs):
|
|||
|
||||
def atleast_3d(inputs):
|
||||
r"""
|
||||
Reshapes `inputs` as arrays with at least three dimensions.
|
||||
Input tensor with three or more dimensions will be returned as is.
|
||||
Reshapes Tensor in `inputs`, every Tensor has at least 2 dimension after this operation.
|
||||
|
||||
Scalar, 1-D or 2-D Tensor is converted to 2-D Tensor,
|
||||
tensor with higher dimensions will be returned as it is.
|
||||
|
||||
Args:
|
||||
inputs (Union[Tensor, List[Tensor]]): One or more input tensors.
|
||||
inputs (Union[Tensor, list[Tensor]]): One or more input tensors.
|
||||
|
||||
Returns:
|
||||
Tensor or list of tensors, each with ``a.ndim >= 3``. For example,
|
||||
a 1-D array of shape `(N,)` becomes a tensor of shape `(1, N, 1)`, and
|
||||
a 2-D array of shape `(M, N)` becomes a tensor of shape `(M, N, 1)`.
|
||||
Tensor or list[Tensor]. If returned a list, every element `a` in that list satisfies: `a`.ndim >= 3.
|
||||
For example, a 1-D Tensor of shape :math:`(N,)` becomes a Tensor of shape :math:`(1, N, 1)`, and
|
||||
a 2-D Tensor of shape :math:`(M, N)` becomes a tensor of shape :math:`(M, N, 1)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If the input is not a tensor or a list of tensors.
|
||||
TypeError: If the `input` is not a tensor or a list of tensors.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -6397,7 +6404,8 @@ def vstack(inputs):
|
|||
Stacks tensors in sequence vertically.
|
||||
|
||||
This is equivalent to concatenation along the first axis.
|
||||
1-D tensors should firstly be reshaped to :math:`(1, N)`, and then be concatenated along the first axis.
|
||||
1-D tensors :math:`(N)` should firstly be reshaped to :math:`(1, N)`,
|
||||
and then be concatenated along the first axis.
|
||||
|
||||
Args:
|
||||
inputs (Union(List[tensor], Tuple[tensor])): A sequence of 1-D or 2-D tensors.
|
||||
|
@ -6409,7 +6417,7 @@ def vstack(inputs):
|
|||
The output shape is similar to the output of `numpy.vstack()` function.
|
||||
|
||||
Raises:
|
||||
TypeError: If `inputs` is not list.
|
||||
TypeError: If `inputs` is not list or tuple.
|
||||
ValueError: If `inputs` is empty.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -6417,12 +6425,12 @@ def vstack(inputs):
|
|||
|
||||
Examples:
|
||||
>>> import mindspore.numpy as np
|
||||
>>> x1 = np.array([1, 2, 3])
|
||||
>>> x2 = np.array([4, 5, 6])
|
||||
>>> x1 = np.array([3, 1, 4])
|
||||
>>> x2 = np.array([1, 5, 9])
|
||||
>>> out = ops.vstack([x1, x2])
|
||||
>>> print(out)
|
||||
[[1 2 3]
|
||||
[4 5 6]]
|
||||
[[3 1 4]
|
||||
[1 5 9]]
|
||||
"""
|
||||
if not isinstance(inputs, (tuple, list)):
|
||||
msg = f"List or tuple of tensors are required, but got {type(inputs)}"
|
||||
|
@ -6452,20 +6460,24 @@ def vstack(inputs):
|
|||
|
||||
def combinations(x, r=2, with_replacement=False):
|
||||
r"""
|
||||
When `with_replacement` is set to `False`, the behavior is similar to python's
|
||||
Returns all r-length subsequences of input Tensor.
|
||||
|
||||
When `with_replacement` is set to `False`, it works similar to Python's
|
||||
`itertools.combinations`, and when `with_replacement` is set to `True`,
|
||||
it behaves like `itertools.combinations_with_replacement`.
|
||||
|
||||
Args:
|
||||
x (Tensor): One-dimensional tensors.
|
||||
r (int, optional): Number of elements. Default: 2.
|
||||
r (int, optional): Number of elements to perform combination. Default: 2.
|
||||
with_replacement (bool, optional): Allow duplication or not. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, equivalent to resulting list.
|
||||
Tensor, contains all possible combinations of elements sampled from input Tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` is not a tensor.
|
||||
TypeError: If `x` is not an int.
|
||||
TypeError: If `with_replacement` is not bool.
|
||||
ValueError: If `x` is not one-dimensional.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -7676,7 +7688,7 @@ def stft(x, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|||
n_fft (int): The size of Fourier transform.
|
||||
hop_length (int, optional): The distance between neighboring sliding window
|
||||
frames. Default: None(treated as equal to :math:`floor(n_fft / 4)`).
|
||||
hop_length (int, optional): the size of window frame and STFT filter.
|
||||
win_length (int, optional): the size of window frame and STFT filter.
|
||||
Default: None(treated as equal to `n_fft`).
|
||||
window (Tensor, optional): the optional window function, 1-D tensor of size `win_length`.
|
||||
Default: None(treated as window of all :math:`1` s). If `win_length` < `n_fft`,
|
||||
|
@ -8040,22 +8052,22 @@ def bmm(input_x, mat2):
|
|||
|
||||
def quantile(x, q, axis=None, keepdims=False):
|
||||
r"""
|
||||
Computes the q-th quantiles of all elements in the input tensor, doing a linear interpolation when the
|
||||
q-th quantile lies between two data points.
|
||||
Computes the q-th quantiles of all elements in `x`, when the
|
||||
q-th quantile lies between two data points, a linear interpolation is implemented between them.
|
||||
|
||||
Args:
|
||||
x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
Supported dtypes: float32, float64.
|
||||
q (float or Tensor): A scalar or 1D tensor of quantile values in the range [0, 1].
|
||||
Supported dtypes: float32, float64.
|
||||
axis (int): The dimension to reduce. Default: None. By default,
|
||||
axis is None resulting in the input tensor being flattened before computation.
|
||||
keepdims (bool): Whether the output tensor has dim retained or not. Default: False.
|
||||
Supported dtypes: float32, float64.
|
||||
q (Union[float, Tensor]): A scalar or 1D tensor of quantile values in the range [0, 1].
|
||||
Supported dtypes: float32, float64.
|
||||
axis (int, optional): The dimension to reduce. By default, `axis` is None resulting in the
|
||||
input tensor being flattened before computation. Default: None.
|
||||
keepdims (bool, optional): Whether the output tensor has dim retained or not. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as the `input`.
|
||||
Tensor, has the same dtype as the `x`.
|
||||
|
||||
Assume the input shape is :math:`(m, x_0, x_1, ..., x_i, ..., X_R)`, axis = :math:`i` and m is
|
||||
Suppose the shape of `x` is :math:`(m, x_0, x_1, ..., x_i, ..., X_R)`, `axis` = :math:`i` and m is
|
||||
the element count of input `q`.
|
||||
|
||||
- If `q` is scalar and `keepdims` is True, the shape of output is :math:`(x_0, x_1, ..., 1, ..., X_R)`.
|
||||
|
@ -8066,9 +8078,9 @@ def quantile(x, q, axis=None, keepdims=False):
|
|||
Raises:
|
||||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If `q` is not a Tensor or float.
|
||||
TypeError: If dtype of `input` is not float32 or float64.
|
||||
TypeError: If dtype of `x` is not float32 or float64.
|
||||
TypeError: If dtype of `q` is not float32 or float64.
|
||||
TypeError: If dtype of `input` and the dtype of `q` is different.
|
||||
TypeError: If dtype of `x` and the dtype of `q` is different.
|
||||
ValueError: If the `q` values not in the range [0, 1].
|
||||
ValueError: If the `axis` values out of range.
|
||||
|
||||
|
@ -8094,25 +8106,25 @@ def quantile(x, q, axis=None, keepdims=False):
|
|||
|
||||
def nanquantile(x, q, axis=None, keepdims=False):
|
||||
r"""
|
||||
This is a variant of mindspore.ops.quantile() that 'ignores' NaN values,
|
||||
computing the quantiles q as if NaN values in input did not exist.
|
||||
If all values in a reduced row are NaN then the quantiles for that reduction will be NaN.
|
||||
This operator is derived from mindspore.ops.quantile() that 'ignores' NaN values.
|
||||
It computes quantiles as though the input has no NaN values. If all values in a
|
||||
reduced dimension are NaN then the quantiles for that reduction will be NaN.
|
||||
|
||||
Refer to :func:`mindspore.ops.quantile` for more detail.
|
||||
Refer to :func:`mindspore.ops.quantile` for more details.
|
||||
|
||||
Args:
|
||||
x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
Supported dtypes: float32, float64.
|
||||
q (float or Tensor): A scalar or 1D tensor of quantile values in the range [0, 1].
|
||||
Supported dtypes: float32, float64.
|
||||
axis (int): The dimension to reduce. Default: None. By default,
|
||||
axis is None resulting in the input tensor being flattened before computation.
|
||||
keepdims (bool): Whether the output tensor has dim retained or not. Default: False.
|
||||
Supported dtypes: float32, float64.
|
||||
q (Union[float, Tensor]): A scalar or 1D tensor of quantile values in the range [0, 1].
|
||||
Supported dtypes: float32, float64.
|
||||
axis (int, optional): The dimension to reduce. By default, `axis` is None resulting in the
|
||||
input tensor being flattened before computation. Default: None.
|
||||
keepdims (bool, optional): Whether the output tensor has dim retained or not. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as the `input`.
|
||||
Tensor, has the same dtype as the `x`.
|
||||
|
||||
Assume the input shape is :math:`(m, x_0, x_1, ..., x_i, ..., X_R)`, axis = :math:`i` and m is
|
||||
Suppose the shape of `x` is :math:`(m, x_0, x_1, ..., x_i, ..., X_R)`, `axis` = :math:`i` and m is
|
||||
the element count of input `q`.
|
||||
|
||||
- If `q` is scalar and `keepdims` is True, the shape of output is :math:`(x_0, x_1, ..., 1, ..., X_R)`.
|
||||
|
@ -8123,10 +8135,10 @@ def nanquantile(x, q, axis=None, keepdims=False):
|
|||
Raises:
|
||||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If `q` is not a Tensor or float.
|
||||
TypeError: If dtype of `input` is not float32 or float64.
|
||||
TypeError: If dtype of `x` is not float32 or float64.
|
||||
TypeError: If dtype of `q` is not float32 or float64.
|
||||
TypeError: If dtype of `input` and the dtype of `q` is different.
|
||||
ValueError: If the `q` values not in the range [0, 1]
|
||||
TypeError: If dtype of `x` and the dtype of `q` is different.
|
||||
ValueError: If the `q` values not in the range [0, 1].
|
||||
ValueError: If the `axis` values out of range.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -9635,41 +9647,32 @@ def polygamma(a, x):
|
|||
.. math::
|
||||
\psi^{(a)}(x) = \frac{d^{(a)}}{dx^{(a)}} \psi(x)
|
||||
|
||||
where \psi(x) is the digamma function.
|
||||
|
||||
Args:
|
||||
a (Tensor): the order of the polygamma function, types: int32, int64, the shape of a is 0.
|
||||
x (Tensor): the tensor to compute the polygamma function.
|
||||
a (Tensor): The order of the polygamma function.
|
||||
Supported dtypes: int32, int64. The shape of `a` is :math:`()`.
|
||||
x (Tensor): The tensor to compute the `a^{th}` derivative of the polygamma function with.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If x is not a Tensor.
|
||||
TypeError: If dtype of input x is not one of: float16, float32, float64.
|
||||
TypeError: If dtype of input a is not one of: int32, int64.
|
||||
TypeError: If shape of input a is not 0.
|
||||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If dtype of `x` is not one of: float16, float32, float64.
|
||||
TypeError: If dtype of `a` is not one of: int32, int64.
|
||||
TypeError: If shape of `a` is not :math:`()`.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1.0, -0.5]), mindspore.float32)
|
||||
>>> x = Tensor(np.array([3.14, -2.71]), mindspore.float64)
|
||||
>>> a = Tensor(np.array(1), mindspore.int64)
|
||||
>>> polygamma = ops.Polygamma()
|
||||
>>> output = polygamma(a, x)
|
||||
>>> print(output)
|
||||
[1.644934 8.934802]
|
||||
>>> a = Tensor(np.array(2), mindspore.int64)
|
||||
>>> output = polygamma(a, x)
|
||||
>>> print(output)
|
||||
[-2.404114 -0.8287967]
|
||||
>>> a = Tensor(np.array(3), mindspore.int64)
|
||||
>>> output = polygamma(a, x)
|
||||
>>> print(output)
|
||||
[ 6.4939404 193.40909 ]
|
||||
>>> a = Tensor(np.array(4), mindspore.int64)
|
||||
>>> output = polygamma(a, x)
|
||||
>>> print(output)
|
||||
[-24.886265 -3.4742498]
|
||||
[ 0.3745, 15.4988]
|
||||
"""
|
||||
polygamma_op = _get_cache_prim(P.Polygamma)()
|
||||
return polygamma_op(a, x)
|
||||
|
@ -9907,11 +9910,13 @@ def diag_embed(x, offset=0, dim1=-2, dim2=-1):
|
|||
|
||||
Args:
|
||||
x (Tensor): Values to fill diagonal.
|
||||
offset (int): Offset of the diagonal. :math:`offset=0` refers to the main diagonal. If :math:`offset>0`,
|
||||
fill the diagonals that are `offset` units upward from the main diagonal. If :math:`offset<0`, fill the
|
||||
diagonals that are `offset` units downward from the main diagonal. Default: 0.
|
||||
dim1 (int): The first dimension in `x` with respect to which to fill diagonal. Default: -2.
|
||||
dim2 (int): The second dimension in `x` with respect to which to fill diagonal. Default: -1.
|
||||
offset (int, optional): Offset of the diagonal. :math:`offset=0` refers to the main diagonal. Default: 0.
|
||||
|
||||
- If :math:`offset>0`, fill the diagonals that are `offset` units upward from the main diagonal.
|
||||
- If :math:`offset<0`, fill the diagonals that are `offset` units downward from the main diagonal.
|
||||
|
||||
dim1 (int, optional): The first dimension in `x` with respect to which to fill diagonal. Default: -2.
|
||||
dim2 (int, optional): The second dimension in `x` with respect to which to fill diagonal. Default: -1.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dtype as `x`, but the shape of output is one dimension higher than the `x`.
|
||||
|
@ -9920,9 +9925,8 @@ def diag_embed(x, offset=0, dim1=-2, dim2=-1):
|
|||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If dtype of `x` is not supported.
|
||||
TypeError: If `offset` is not an int.
|
||||
TypeError: If `dim1` is not an int.
|
||||
TypeError: If `dim2` is not an int.
|
||||
ValueError: If the dimension of input is not 1-6D.
|
||||
TypeError: If `dim1` or `dim2` is not an int.
|
||||
ValueError: If the dimension of `x` is not 1D-6D.
|
||||
ValueError: If `dim1` is not in range of [-len(x.shape), len(x.shape)).
|
||||
ValueError: If `dim2` is not in range of [-len(x.shape), len(x.shape)).
|
||||
ValueError: If `dim1` and `dim2` are identical.
|
||||
|
|
|
@ -7996,10 +7996,10 @@ class Bincount(Primitive):
|
|||
|
||||
class CountNonZero(Primitive):
|
||||
"""
|
||||
Counts the number of non-zero values in the input tensor along the given dims.
|
||||
If no dim is specified then all non-zeros in the tensor are counted.
|
||||
Calculates the total number of non-zero entries in the input tensor along the
|
||||
specified dimensions.
|
||||
|
||||
Refer to :func:`mindspore.ops.count_nonzero` for more detail.
|
||||
Refer to :func:`mindspore.ops.count_nonzero` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
|
|
@ -7298,33 +7298,10 @@ class NextAfter(Primitive):
|
|||
|
||||
class TrilIndices(Primitive):
|
||||
r"""
|
||||
Returns the indices of the lower triangular part of a `row` -by- `col` matrix in a Tensor.
|
||||
The Tensor has a shape :math:`(2, tril\_size)` where :math:`tril\_size` is the number of
|
||||
elements in the lower triangular matrix. The first row contains row coordinates of
|
||||
all indices and the second row contains column coordinates.
|
||||
Indices are ordered based on rows and then columns.
|
||||
Calculates the indices of the lower triangular elements in a `row` * `col` matrix
|
||||
and returns them as a 2-by-N Tensor.
|
||||
|
||||
The lower triangular part of the matrix is defined as the elements on and below the diagonal.
|
||||
|
||||
Note:
|
||||
When running on CUDA, row * col must be less than 2^59 to prevent overflow during calculation.
|
||||
|
||||
Args:
|
||||
row (int): number of rows in the 2-D matrix.
|
||||
col (int): number of columns in the 2-D matrix.
|
||||
offset (int, optional): diagonal offset from the main diagonal. Default: 0.
|
||||
dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor.
|
||||
An optional data type of `mstype.int32` and `mstype.int64`. Default: `mstype.int32`.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type specified by `dtype`.
|
||||
The shape of output is :math:`(2, tril\_size)`, where :math:`tril\_size` is the number of elements in the
|
||||
lower triangular matrix.
|
||||
|
||||
Raises:
|
||||
TypeError: If `row`, `col` or `offset` is not an int.
|
||||
TypeError: If `dtype` is neither int32 nor int64.
|
||||
ValueError: If `row` or `col` < 0.
|
||||
Refer to :func:`mindspore.ops.tril_indices` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -7527,33 +7504,10 @@ class Orgqr(Primitive):
|
|||
|
||||
class TriuIndices(Primitive):
|
||||
r"""
|
||||
Returns the indices of the upper triangular part of a `row` -by- `col` matrix in a Tensor.
|
||||
The Tensor has a shape :math:`(2, tril\_size)` where :math:`tril\_size` is the number of
|
||||
elements in the upper triangular matrix. The first row contains row coordinates of
|
||||
all indices and the second row contains column coordinates.
|
||||
Indices are ordered based on rows and then columns.
|
||||
Calculates the indices of the upper triangular elements in a `row` * `col` matrix
|
||||
and returns them as a 2-by-N Tensor.
|
||||
|
||||
The upper triangular part of the matrix is defined as the elements on and above the diagonal.
|
||||
|
||||
Note:
|
||||
When running on CUDA, row * col must be less than 2^59 to prevent overflow during calculation.
|
||||
|
||||
Args:
|
||||
row (int): number of rows in the 2-D matrix.
|
||||
col (int): number of columns in the 2-D matrix.
|
||||
offset (int, optional): diagonal offset from the main diagonal. Default: 0.
|
||||
dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor.
|
||||
An optional data type of `mstype.int32` and `mstype.int64`. Default: `mstype.int32`.
|
||||
|
||||
Outputs:
|
||||
- **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type specified by `dtype`.
|
||||
The shape of output is :math:`(2, tril\_size)`, where :math:`tril\_size` is the number of elements in the
|
||||
lower triangular matrix.
|
||||
|
||||
Raises:
|
||||
TypeError: If `row`, `col` or `offset` is not an int.
|
||||
TypeError: If `dtype` is neither int32 nor int64.
|
||||
ValueError: If `row` or `col` < 0.
|
||||
Refer to :func:`mindspore.ops.triu_indices` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
|
Loading…
Reference in New Issue