forked from mindspore-Ecosystem/mindspore
create group for syncbn
This commit is contained in:
parent
82ed9ac3fa
commit
91bbca34a4
|
@ -18,6 +18,7 @@ from __future__ import division
|
||||||
|
|
||||||
import itertools
|
import itertools
|
||||||
import numbers
|
import numbers
|
||||||
|
import hashlib
|
||||||
|
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.ops import functional as F
|
from mindspore.ops import functional as F
|
||||||
|
@ -35,12 +36,11 @@ from mindspore.communication import management
|
||||||
from mindspore.common import dtype as mstype
|
from mindspore.common import dtype as mstype
|
||||||
from mindspore.parallel._utils import _is_in_auto_parallel_mode
|
from mindspore.parallel._utils import _is_in_auto_parallel_mode
|
||||||
from mindspore.nn.cell import Cell
|
from mindspore.nn.cell import Cell
|
||||||
|
from mindspore import log as logger
|
||||||
|
|
||||||
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'LayerNorm', 'GroupNorm',
|
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'LayerNorm', 'GroupNorm',
|
||||||
'SyncBatchNorm', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d']
|
'SyncBatchNorm', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d']
|
||||||
|
|
||||||
SYNC_BN_GROUP_NAME = ""
|
|
||||||
|
|
||||||
|
|
||||||
class _BatchNorm(Cell):
|
class _BatchNorm(Cell):
|
||||||
"""Batch Normalization base class."""
|
"""Batch Normalization base class."""
|
||||||
|
@ -404,6 +404,16 @@ class BatchNorm3d(Cell):
|
||||||
return bn3d_out
|
return bn3d_out
|
||||||
|
|
||||||
|
|
||||||
|
SYNCBN_GROUP_DICT = None
|
||||||
|
|
||||||
|
|
||||||
|
def _syncbatchnorm_group_dict():
|
||||||
|
global SYNCBN_GROUP_DICT
|
||||||
|
if SYNCBN_GROUP_DICT is None:
|
||||||
|
SYNCBN_GROUP_DICT = dict()
|
||||||
|
return SYNCBN_GROUP_DICT
|
||||||
|
|
||||||
|
|
||||||
class SyncBatchNorm(_BatchNorm):
|
class SyncBatchNorm(_BatchNorm):
|
||||||
r"""
|
r"""
|
||||||
Sync Batch Normalization layer over a N-dimension input.
|
Sync Batch Normalization layer over a N-dimension input.
|
||||||
|
@ -500,7 +510,7 @@ class SyncBatchNorm(_BatchNorm):
|
||||||
[[ 0.999995 0.999995 ]
|
[[ 0.999995 0.999995 ]
|
||||||
[ 0.999995 0.999995 ]]]]
|
[ 0.999995 0.999995 ]]]]
|
||||||
"""
|
"""
|
||||||
|
@cell_attr_register(attrs=['num_features', 'process_groups'])
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
num_features,
|
num_features,
|
||||||
eps=1e-5,
|
eps=1e-5,
|
||||||
|
@ -523,9 +533,10 @@ class SyncBatchNorm(_BatchNorm):
|
||||||
moving_var_init,
|
moving_var_init,
|
||||||
use_batch_statistics)
|
use_batch_statistics)
|
||||||
self.is_global = False
|
self.is_global = False
|
||||||
global SYNC_BN_GROUP_NAME
|
self.group_name = None
|
||||||
self.process_groups = process_groups
|
self.process_groups = process_groups
|
||||||
if self.process_groups != 0:
|
if self.process_groups != 0:
|
||||||
|
self.is_global = True
|
||||||
self.rank_id = get_rank()
|
self.rank_id = get_rank()
|
||||||
self.rank_size = get_group_size()
|
self.rank_size = get_group_size()
|
||||||
if self.process_groups is not None:
|
if self.process_groups is not None:
|
||||||
|
@ -533,34 +544,38 @@ class SyncBatchNorm(_BatchNorm):
|
||||||
self._check_rank_ids(self.process_groups, self.rank_size)
|
self._check_rank_ids(self.process_groups, self.rank_size)
|
||||||
self._create_sync_groups()
|
self._create_sync_groups()
|
||||||
elif self.rank_size > 1:
|
elif self.rank_size > 1:
|
||||||
self.is_global = True
|
|
||||||
self.group_device_num = self.rank_size
|
self.group_device_num = self.rank_size
|
||||||
self.device_list = [i for i in range(0, self.rank_size)]
|
|
||||||
if context.get_context("device_target") == "Ascend":
|
if context.get_context("device_target") == "Ascend":
|
||||||
if SYNC_BN_GROUP_NAME == "":
|
self.group_name = "hccl_world_group"
|
||||||
SYNC_BN_GROUP_NAME = "sync_bn_group0"
|
|
||||||
management.create_group(SYNC_BN_GROUP_NAME, self.device_list)
|
|
||||||
elif context.get_context("device_target") == "GPU":
|
elif context.get_context("device_target") == "GPU":
|
||||||
if SYNC_BN_GROUP_NAME == "":
|
self.group_name = "nccl_world_group"
|
||||||
SYNC_BN_GROUP_NAME = "nccl_world_group"
|
|
||||||
|
|
||||||
if self.is_global:
|
if self.is_global:
|
||||||
self.bn_train = inner.SyncBatchNorm(epsilon=self.eps,
|
self.bn_train = inner.SyncBatchNorm(epsilon=self.eps,
|
||||||
momentum=self.momentum,
|
momentum=self.momentum,
|
||||||
group=SYNC_BN_GROUP_NAME,
|
group=self.group_name,
|
||||||
device_num=self.group_device_num)
|
device_num=self.group_device_num)
|
||||||
|
|
||||||
def _create_sync_groups(self):
|
def _create_sync_groups(self):
|
||||||
for i in range(len(self.process_groups)):
|
""" create groups by process groups. """
|
||||||
validator.check_isinstance("process_groups[%d]" % i, self.process_groups[i], list)
|
for sub_group in self.process_groups:
|
||||||
self.group_device_num = len(self.process_groups[i])
|
validator.check_isinstance("sub group", sub_group, list)
|
||||||
if self.rank_id in self.process_groups[i] and self.group_device_num > 1:
|
self.group_device_num = len(sub_group)
|
||||||
self.is_global = True
|
if self.rank_id in sub_group and self.group_device_num > 1:
|
||||||
global SYNC_BN_GROUP_NAME
|
rank_list_name = '_'.join('%s' % id for id in sub_group)
|
||||||
if SYNC_BN_GROUP_NAME == "":
|
group_dict = _syncbatchnorm_group_dict()
|
||||||
SYNC_BN_GROUP_NAME = "sync_bn_group%d" % i
|
if rank_list_name not in group_dict:
|
||||||
management.create_group(SYNC_BN_GROUP_NAME, self.process_groups[i])
|
md5 = hashlib.md5()
|
||||||
|
md5.update(rank_list_name.encode('utf-8'))
|
||||||
|
hash_name = md5.hexdigest()
|
||||||
|
self.group_name = str(self.group_device_num) + '_' + hash_name
|
||||||
|
group_dict[rank_list_name] = self.group_name
|
||||||
|
management.create_group(self.group_name, sub_group)
|
||||||
|
logger.info("create group for sync batchnorm, the rank list is {}, the group name is {}".format(
|
||||||
|
rank_list_name, self.group_name))
|
||||||
|
else:
|
||||||
|
self.group_name = group_dict[rank_list_name]
|
||||||
|
logger.info("the group for {} already exists, no need to create".format(rank_list_name))
|
||||||
|
|
||||||
def _check_rank_ids(self, process_groups, rank_size):
|
def _check_rank_ids(self, process_groups, rank_size):
|
||||||
seen = set()
|
seen = set()
|
||||||
|
|
|
@ -0,0 +1,69 @@
|
||||||
|
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore import context, Tensor, Parameter
|
||||||
|
from mindspore.common.api import _cell_graph_executor
|
||||||
|
from mindspore.nn import Cell, TrainOneStepCell, Momentum, SyncBatchNorm
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class Net(Cell):
|
||||||
|
def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride):
|
||||||
|
super().__init__()
|
||||||
|
self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size,
|
||||||
|
pad_mode=pad_mode, stride=stride)
|
||||||
|
self.conv2d_weight = Parameter(conv2d_weight, "w1")
|
||||||
|
self.bn1 = SyncBatchNorm(num_features=8, process_groups=[[0, 1], [2, 3]])
|
||||||
|
self.bn2 = SyncBatchNorm(num_features=8, process_groups=[[0, 1, 2, 3]])
|
||||||
|
self.bn3 = SyncBatchNorm(num_features=8)
|
||||||
|
self.bn4 = SyncBatchNorm(num_features=8, process_groups=[[0, 1], [2, 3]])
|
||||||
|
|
||||||
|
def construct(self, x, b):
|
||||||
|
out = self.conv2d(x, self.conv2d_weight)
|
||||||
|
out = self.bn1(out)
|
||||||
|
out = self.bn2(out)
|
||||||
|
out = self.bn3(out)
|
||||||
|
out = self.bn4(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
_x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
|
||||||
|
_w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32)
|
||||||
|
_b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def compile_net(net):
|
||||||
|
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
|
train_net = TrainOneStepCell(net, optimizer)
|
||||||
|
train_net.set_train()
|
||||||
|
_cell_graph_executor.compile(train_net, _x, _b)
|
||||||
|
context.reset_auto_parallel_context()
|
||||||
|
|
||||||
|
|
||||||
|
def test_syncbatchnorm():
|
||||||
|
"""
|
||||||
|
Feature: test syncbatchnorm
|
||||||
|
Description: create group
|
||||||
|
Expectation: compile success
|
||||||
|
"""
|
||||||
|
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=4, global_rank=0)
|
||||||
|
net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1)
|
||||||
|
compile_net(net)
|
||||||
|
assert net.bn1.group_name == "2_174882033225436b1440b7de44686450"
|
||||||
|
assert net.bn2.group_name == "4_937e3b535d29ac4571b6fecb60df6169"
|
||||||
|
assert net.bn3.group_name == "hccl_world_group"
|
||||||
|
assert net.bn4.group_name == "2_174882033225436b1440b7de44686450"
|
Loading…
Reference in New Issue