forked from mindspore-Ecosystem/mindspore
!501 Refactor PyNative Excution Get Input Tensors
Merge pull request !501 from chujinjin/abstract_input_tensor
This commit is contained in:
commit
90dfbab386
|
@ -30,7 +30,8 @@
|
|||
#include "pipeline/parse/data_converter.h"
|
||||
#include "pipeline/static_analysis/prim.h"
|
||||
#include "session/session_factory.h"
|
||||
|
||||
#include "pre_activate/pass/const_input_to_attr_registry.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
#include "pynative/base.h"
|
||||
|
||||
#ifdef ENABLE_GE
|
||||
|
@ -188,6 +189,117 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat
|
|||
return std::move(result);
|
||||
}
|
||||
|
||||
bool RunOpConvertConstInputToAttr(const py::object &input_object, size_t input_index, const PrimitivePtr &op_prim,
|
||||
const std::unordered_set<size_t> &input_attrs) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
auto input_names_value = op_prim->GetAttr(kAttrInputNames);
|
||||
if (input_names_value == nullptr) {
|
||||
return false;
|
||||
}
|
||||
auto input_names_vec = GetValue<std::vector<std::string>>(input_names_value);
|
||||
if (input_index >= input_names_vec.size()) {
|
||||
MS_LOG(EXCEPTION) << "The input index: " << input_index << " is large than the input names vector size!";
|
||||
}
|
||||
|
||||
if (input_attrs.find(input_index) != input_attrs.end()) {
|
||||
ValuePtr value = parse::data_converter::PyDataToValue(input_object);
|
||||
MS_EXCEPTION_IF_NULL(value);
|
||||
auto input_name = input_names_vec[input_index];
|
||||
op_prim->set_attr(input_name, value);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void PlantTensorTupleToVector(const py::tuple &tuple_inputs, const PrimitivePtr &op_prim,
|
||||
std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
for (const auto &input_object : tuple_inputs) {
|
||||
if (!py::isinstance<tensor::Tensor>(input_object)) {
|
||||
MS_LOG(EXCEPTION) << "The input object is not a tensor!";
|
||||
}
|
||||
auto tensor = py::cast<tensor::TensorPtr>(input_object);
|
||||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
input_tensor->push_back(tensor);
|
||||
}
|
||||
op_prim->set_attr(kAttrDynInputSizes, MakeValue(std::vector<int>{SizeToInt(tuple_inputs.size())}));
|
||||
}
|
||||
|
||||
void ConvertValueTupleToTensor(const py::object &input_object, std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
ValuePtr input_value = parse::data_converter::PyDataToValue(input_object);
|
||||
MS_EXCEPTION_IF_NULL(input_value);
|
||||
if (!input_value->isa<ValueTuple>()) {
|
||||
MS_LOG(EXCEPTION) << "The input object is not a value tuple!";
|
||||
}
|
||||
auto value_tuple = input_value->cast<ValueTuplePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_tuple);
|
||||
tensor::TensorPtr tensor_ptr = opt::CreateTupleTensor(value_tuple);
|
||||
MS_EXCEPTION_IF_NULL(tensor_ptr);
|
||||
input_tensor->push_back(tensor_ptr);
|
||||
}
|
||||
|
||||
void ConvertPyObjectToTensor(const py::object &input_object, const PrimitivePtr &op_prim,
|
||||
std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
tensor::TensorPtr tensor_ptr = nullptr;
|
||||
if (py::isinstance<tensor::Tensor>(input_object)) {
|
||||
tensor_ptr = py::cast<tensor::TensorPtr>(input_object);
|
||||
} else if (py::isinstance<py::float_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::float_>(input_object), kFloat32);
|
||||
} else if (py::isinstance<py::int_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::int_>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::list>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::list>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::array>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::array>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::tuple>(input_object)) {
|
||||
auto tuple_inputs = py::cast<py::tuple>(input_object);
|
||||
if (py::isinstance<tensor::Tensor>(tuple_inputs[0])) {
|
||||
PlantTensorTupleToVector(tuple_inputs, op_prim, input_tensor);
|
||||
} else {
|
||||
ConvertValueTupleToTensor(input_object, input_tensor);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Run op inputs type is invalid!";
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(tensor_ptr);
|
||||
input_tensor->push_back(tensor_ptr);
|
||||
}
|
||||
|
||||
void ConstructInputTensor(const OpExecInfoPtr &op_run_info, std::vector<bool> *tensors_mask,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) {
|
||||
MS_EXCEPTION_IF_NULL(tensors_mask);
|
||||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
PrimitivePtr op_prim = op_run_info->py_primitive;
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
|
||||
if (op_run_info->op_inputs.size() != op_run_info->inputs_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "Op input size " << op_run_info->op_inputs.size() << " should be equal to op input mask size "
|
||||
<< op_run_info->inputs_mask.size();
|
||||
}
|
||||
opt::ConstInputToAttrInfoRegister reg;
|
||||
bool reg_exist = opt::ConstInputToAttrInfoRegistry::Instance().GetRegisterByOpName(op_run_info->op_name, ®);
|
||||
size_t input_num = op_run_info->op_inputs.size();
|
||||
MS_LOG(INFO) << "py input size: " << input_num;
|
||||
for (size_t index = 0; index < input_num; ++index) {
|
||||
// convert const input to attr
|
||||
if (reg_exist &&
|
||||
RunOpConvertConstInputToAttr(op_run_info->op_inputs[index], index, op_prim, reg.GetConstInputAttrInfo())) {
|
||||
continue;
|
||||
}
|
||||
// convert const and tuple input to tensor
|
||||
ConvertPyObjectToTensor(op_run_info->op_inputs[index], op_prim, input_tensors);
|
||||
// make tensors, weight : 1, data : 0
|
||||
std::vector<bool> new_mask(input_tensors->size() - tensors_mask->size(),
|
||||
py::cast<bool>(op_run_info->inputs_mask[index]));
|
||||
tensors_mask->insert(tensors_mask->end(), new_mask.begin(), new_mask.end());
|
||||
}
|
||||
}
|
||||
|
||||
py::object RunOpInMs(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *status) {
|
||||
MS_EXCEPTION_IF_NULL(op_exec_info);
|
||||
MS_LOG(INFO) << "Start run op[" << op_exec_info->op_name << "] with backend policy ms";
|
||||
|
@ -204,7 +316,9 @@ py::object RunOpInMs(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat
|
|||
|
||||
std::string graph_info = GetSingleOpGraphInfo(op_exec_info);
|
||||
std::vector<tensor::TensorPtr> input_tensors;
|
||||
session->BuildOp(*op_exec_info, graph_info, &input_tensors);
|
||||
std::vector<bool> tensors_mask;
|
||||
ConstructInputTensor(op_exec_info, &tensors_mask, &input_tensors);
|
||||
session->BuildOp(*op_exec_info, graph_info, input_tensors, tensors_mask);
|
||||
py::tuple result = session->RunOp(*op_exec_info, graph_info, input_tensors);
|
||||
ms_context->set_enable_pynative_infer(false);
|
||||
*status = PYNATIVE_SUCCESS;
|
||||
|
|
|
@ -250,11 +250,11 @@ void AscendSession::RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_gra
|
|||
}
|
||||
|
||||
void AscendSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) {
|
||||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
const std::vector<tensor::TensorPtr> &input_tensors,
|
||||
const std::vector<bool> &tensors_mask) {
|
||||
MS_LOG(INFO) << "Build op " << op_run_info.op_name << " start !";
|
||||
// construct graph include one op
|
||||
auto graph = ConstructSingleOpGraph(op_run_info, input_tensors);
|
||||
auto graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask);
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
opt::RunOpAscendBackendIRFusionOptimization(graph);
|
||||
// kernel select
|
||||
|
|
|
@ -42,7 +42,7 @@ class AscendSession : public SessionBasic {
|
|||
void RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) override;
|
||||
void BuildGraph(GraphId) override;
|
||||
void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) override;
|
||||
const std::vector<tensor::TensorPtr> &input_tensors, const std::vector<bool> &tensors_mask) override;
|
||||
py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
const std::vector<tensor::TensorPtr> &input_tensors) override;
|
||||
|
||||
|
|
|
@ -133,10 +133,9 @@ void GPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::Ten
|
|||
}
|
||||
|
||||
void GPUSession::BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) {
|
||||
const std::vector<tensor::TensorPtr> &input_tensors, const std::vector<bool> &tensors_mask) {
|
||||
// Prepare the graph
|
||||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors);
|
||||
auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask);
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
SelectKernel(kernel_graph);
|
||||
StartKernelRT();
|
||||
|
|
|
@ -40,7 +40,7 @@ class GPUSession : public SessionBasic {
|
|||
|
||||
void RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) override;
|
||||
void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) override;
|
||||
const std::vector<tensor::TensorPtr> &input_tensors, const std::vector<bool> &tensors_mask) override;
|
||||
py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
|
||||
const std::vector<tensor::TensorPtr> &input_tensors) override;
|
||||
|
||||
|
|
|
@ -180,115 +180,6 @@ BaseRef CreatTupleForOutput(const AnfNodePtr &anf, const KernelGraph &graph,
|
|||
return ret;
|
||||
}
|
||||
|
||||
bool RunOpConvertConstInputToAttr(const py::object &input_object, size_t input_index, const PrimitivePtr &op_prim,
|
||||
const std::unordered_set<size_t> &input_attrs) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
auto input_names_value = op_prim->GetAttr(kAttrInputNames);
|
||||
if (input_names_value == nullptr) {
|
||||
return false;
|
||||
}
|
||||
auto input_names_vec = GetValue<std::vector<std::string>>(input_names_value);
|
||||
if (input_index >= input_names_vec.size()) {
|
||||
MS_LOG(EXCEPTION) << "The input index: " << input_index << " is large than the input names vector size!";
|
||||
}
|
||||
|
||||
if (input_attrs.find(input_index) != input_attrs.end()) {
|
||||
ValuePtr value = parse::data_converter::PyDataToValue(input_object);
|
||||
MS_EXCEPTION_IF_NULL(value);
|
||||
auto input_name = input_names_vec[input_index];
|
||||
op_prim->set_attr(input_name, value);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void PlantTensorTupleToVector(const py::tuple &tuple_inputs, const PrimitivePtr &op_prim,
|
||||
std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
for (const auto &input_object : tuple_inputs) {
|
||||
if (!py::isinstance<tensor::Tensor>(input_object)) {
|
||||
MS_LOG(EXCEPTION) << "The input object is not a tensor!";
|
||||
}
|
||||
auto tensor = py::cast<tensor::TensorPtr>(input_object);
|
||||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
input_tensor->push_back(tensor);
|
||||
}
|
||||
op_prim->set_attr(kAttrDynInputSizes, MakeValue(std::vector<int>{SizeToInt(tuple_inputs.size())}));
|
||||
}
|
||||
|
||||
void ConvertValueTupleToTensor(const py::object &input_object, std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
ValuePtr input_value = parse::data_converter::PyDataToValue(input_object);
|
||||
MS_EXCEPTION_IF_NULL(input_value);
|
||||
if (!input_value->isa<ValueTuple>()) {
|
||||
MS_LOG(EXCEPTION) << "The input object is not a value tuple!";
|
||||
}
|
||||
auto value_tuple = input_value->cast<ValueTuplePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_tuple);
|
||||
tensor::TensorPtr tensor_ptr = opt::CreateTupleTensor(value_tuple);
|
||||
MS_EXCEPTION_IF_NULL(tensor_ptr);
|
||||
input_tensor->push_back(tensor_ptr);
|
||||
}
|
||||
|
||||
void ConvertPyObjectToTensor(const py::object &input_object, const PrimitivePtr &op_prim,
|
||||
std::vector<tensor::TensorPtr> *input_tensor) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
MS_EXCEPTION_IF_NULL(input_tensor);
|
||||
tensor::TensorPtr tensor_ptr = nullptr;
|
||||
if (py::isinstance<tensor::Tensor>(input_object)) {
|
||||
tensor_ptr = py::cast<tensor::TensorPtr>(input_object);
|
||||
} else if (py::isinstance<py::float_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::float_>(input_object), kFloat32);
|
||||
} else if (py::isinstance<py::int_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::int_>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::list>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::list>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::array>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::array>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::tuple>(input_object)) {
|
||||
auto tuple_inputs = py::cast<py::tuple>(input_object);
|
||||
if (py::isinstance<tensor::Tensor>(tuple_inputs[0])) {
|
||||
PlantTensorTupleToVector(tuple_inputs, op_prim, input_tensor);
|
||||
} else {
|
||||
ConvertValueTupleToTensor(input_object, input_tensor);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Run op inputs type is invalid!";
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(tensor_ptr);
|
||||
input_tensor->push_back(tensor_ptr);
|
||||
}
|
||||
|
||||
void ConvertInputPyobject(const OpRunInfo &op_run_info, const PrimitivePtr &op_prim,
|
||||
std::vector<tensor::TensorPtr> *input_tensors, std::vector<bool> *tensors_mask) {
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
MS_EXCEPTION_IF_NULL(tensors_mask);
|
||||
if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "Op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size "
|
||||
<< op_run_info.inputs_mask.size();
|
||||
}
|
||||
opt::ConstInputToAttrInfoRegister reg;
|
||||
bool reg_exist = opt::ConstInputToAttrInfoRegistry::Instance().GetRegisterByOpName(op_run_info.op_name, ®);
|
||||
size_t input_num = op_run_info.op_inputs.size();
|
||||
MS_LOG(INFO) << "py input size: " << input_num;
|
||||
for (size_t index = 0; index < input_num; ++index) {
|
||||
// convert const input to attr
|
||||
if (reg_exist &&
|
||||
RunOpConvertConstInputToAttr(op_run_info.op_inputs[index], index, op_prim, reg.GetConstInputAttrInfo())) {
|
||||
continue;
|
||||
}
|
||||
// convert const and tuple input to tensor
|
||||
ConvertPyObjectToTensor(op_run_info.op_inputs[index], op_prim, input_tensors);
|
||||
// make tensors, weight : 1, data : 0
|
||||
std::vector<bool> new_mask(input_tensors->size() - tensors_mask->size(),
|
||||
py::cast<bool>(op_run_info.inputs_mask[index]));
|
||||
tensors_mask->insert(tensors_mask->end(), new_mask.begin(), new_mask.end());
|
||||
}
|
||||
}
|
||||
|
||||
ValueNodePtr CreateNewValueNode(const AnfNodePtr &anf, KernelGraph *graph) {
|
||||
auto value_node = anf->cast<ValueNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(value_node);
|
||||
|
@ -747,26 +638,22 @@ void SessionBasic::CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr
|
|||
}
|
||||
|
||||
std::shared_ptr<KernelGraph> SessionBasic::ConstructSingleOpGraph(const OpRunInfo &op_run_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensors) {
|
||||
MS_EXCEPTION_IF_NULL(input_tensors);
|
||||
const std::vector<tensor::TensorPtr> &input_tensors,
|
||||
const std::vector<bool> &tensors_mask) {
|
||||
auto graph = std::make_shared<KernelGraph>();
|
||||
std::vector<AnfNodePtr> inputs;
|
||||
// set input[0]
|
||||
PrimitivePtr op_prim = op_run_info.py_primitive;
|
||||
if (op_prim == nullptr) {
|
||||
op_prim = std::make_shared<Primitive>(op_run_info.op_name);
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(op_prim);
|
||||
inputs.push_back(std::make_shared<ValueNode>(op_prim));
|
||||
// set input parameter
|
||||
std::vector<bool> tensors_mask;
|
||||
ConvertInputPyobject(op_run_info, op_prim, input_tensors, &tensors_mask);
|
||||
MS_LOG(INFO) << "Input tensor size: " << input_tensors->size();
|
||||
if (input_tensors->size() != tensors_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors->size() << " should be equal to tensors mask size "
|
||||
MS_LOG(INFO) << "Input tensor size: " << input_tensors.size();
|
||||
if (input_tensors.size() != tensors_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors.size() << " should be equal to tensors mask size "
|
||||
<< tensors_mask.size();
|
||||
}
|
||||
for (size_t i = 0; i < input_tensors->size(); ++i) {
|
||||
auto parameter = ConstructRunOpParameter(graph, input_tensors->at(i), tensors_mask[i]);
|
||||
for (size_t i = 0; i < input_tensors.size(); ++i) {
|
||||
auto parameter = ConstructRunOpParameter(graph, input_tensors.at(i), tensors_mask[i]);
|
||||
inputs.push_back(parameter);
|
||||
graph->MutableInputs()->push_back(parameter);
|
||||
}
|
||||
|
|
|
@ -61,7 +61,8 @@ class SessionBasic {
|
|||
|
||||
virtual void RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) = 0;
|
||||
|
||||
virtual void BuildOp(const OpRunInfo &, const GraphInfo &, std::vector<tensor::TensorPtr> *input_tensors) {}
|
||||
virtual void BuildOp(const OpRunInfo &, const GraphInfo &, const std::vector<tensor::TensorPtr> &input_tensors,
|
||||
const std::vector<bool> &tensors_mask) {}
|
||||
|
||||
virtual py::tuple RunOp(const OpRunInfo &, const GraphInfo &, const std::vector<tensor::TensorPtr> &input_tensors) {
|
||||
return py::tuple();
|
||||
|
@ -99,7 +100,8 @@ class SessionBasic {
|
|||
CNodePtr ConstructOutput(const AnfNodePtrList &outputs, const std::shared_ptr<KernelGraph> &graph);
|
||||
// create a single run op graph
|
||||
std::shared_ptr<KernelGraph> ConstructSingleOpGraph(const OpRunInfo &op_run_info,
|
||||
std::vector<tensor::TensorPtr> *input_tensor);
|
||||
const std::vector<tensor::TensorPtr> &input_tensors,
|
||||
const std::vector<bool> &tensors_mask);
|
||||
// trans BaseRef list to py::tuple
|
||||
BaseRef TransformBaseRefListToTuple(const BaseRef &base_ref);
|
||||
|
||||
|
|
Loading…
Reference in New Issue