!7032 add CTCGreedyDecoder ops for aicpu

From: @yanzhenxiang2020
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-11 17:23:05 +08:00 committed by Gitee
commit 8e3bf54fd2
3 changed files with 99 additions and 0 deletions

View File

@ -59,3 +59,4 @@ from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu
from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu
from .meshgrid import _meshgrid_aicpu
from .trans_data import _trans_data_aicpu
from .ctc_greedy_decoder import _ctc_greedy_decoder_aicpu

View File

@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CTCGreedyDecoder op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
ctc_greedy_decoder_op_info = AiCPURegOp("CTCGreedyDecoder") \
.fusion_type("OPAQUE") \
.input(0, "inputs", "required") \
.input(1, "sequence_length", "required") \
.output(0, "decoded_indices", "required") \
.output(1, "decoded_values", "required") \
.output(2, "decoded_shape", "required") \
.output(3, "log_probability", "required") \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I64_Default, DataType.I64_Default,
DataType.I64_Default, DataType.F64_Default) \
.dtype_format(DataType.F32_NCHW, DataType.I32_NCHW, DataType.I64_NCHW, DataType.I64_NCHW,
DataType.I64_NCHW, DataType.F32_NCHW) \
.dtype_format(DataType.F64_NCHW, DataType.I32_NCHW, DataType.I64_NCHW, DataType.I64_NCHW,
DataType.I64_NCHW, DataType.F64_NCHW) \
.get_op_info()
@op_info_register(ctc_greedy_decoder_op_info)
def _ctc_greedy_decoder_aicpu():
"""CTCGreedyDecoder AiCPU register"""
return

View File

@ -0,0 +1,59 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.ctc = P.CTCGreedyDecoder()
def construct(self, inputs, sequence_length):
return self.ctc(inputs, sequence_length)
def test_net_float32():
x = np.random.randn(2, 2, 3).astype(np.float32)
sequence_length = np.array([2, 2]).astype(np.int32)
net = Net()
output = net(Tensor(x), Tensor(sequence_length))
print(output)
def test_net_assert():
x = np.array([[[0.44662005, 0.41900548, -0.8334965],
[-0.28560895, -0.03626213, -0.04149306]],
[[-0.70390207, 0.2977548, -0.4097819],
[-0.6942656, -0.14625494, -0.90554816]]]).astype(np.float32)
sequence_length = np.array([2, 2]).astype(np.int32)
net = Net()
output = net(Tensor(x), Tensor(sequence_length))
print(output)
out_expect0 = np.array([0, 0, 0, 1, 1, 0]).reshape(3, 2)
out_expect1 = np.array([0, 1, 1])
out_expect2 = np.array([2, 2])
out_expect3 = np.array([-0.7443749, 0.18251707]).reshape(2, 1)
assert np.array_equal(output[0].asnumpy(), out_expect0)
assert np.array_equal(output[1].asnumpy(), out_expect1)
assert np.array_equal(output[2].asnumpy(), out_expect2)
assert np.array_equal(output[3].asnumpy(), out_expect3)