forked from mindspore-Ecosystem/mindspore
[feat][assistant][I48O5R] add new aicpu operator SparseApplyProximalGradientDescent
This commit is contained in:
parent
40d8645b5e
commit
8e1848621d
|
@ -0,0 +1,239 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/sparse_apply_proximal_gradient_descent_cpu_kernel.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <map>
|
||||
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
constexpr size_t kSparseApplyProximalGradientDescentInputsNum = 6;
|
||||
constexpr size_t kSparseApplyProximalGradientDescentOutputsNum = 1;
|
||||
|
||||
using KernelRunFunc = SparseApplyProximalGradientDescentCpuKernelMod::KernelRunFunc;
|
||||
|
||||
#define ADD_KERNEL(t1, t2, t3, t4, t5, t6, t7) \
|
||||
KernelAttr() \
|
||||
.AddInputAttr(kNumberType##t1) \
|
||||
.AddInputAttr(kNumberType##t2) \
|
||||
.AddInputAttr(kNumberType##t3) \
|
||||
.AddInputAttr(kNumberType##t4) \
|
||||
.AddInputAttr(kNumberType##t5) \
|
||||
.AddInputAttr(kNumberType##t6) \
|
||||
.AddOutputAttr(kNumberType##t7)
|
||||
} // namespace
|
||||
|
||||
bool SparseApplyProximalGradientDescentCpuKernelMod::Init(const BaseOperatorPtr &base_operator,
|
||||
const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
kernel_name_ = base_operator->name();
|
||||
if (inputs.empty() || outputs.empty()) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', it got empty inputs or outputs, which is invalid.";
|
||||
return false;
|
||||
}
|
||||
if (inputs.size() != kSparseApplyProximalGradientDescentInputsNum) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', input size must be " << kSparseApplyProximalGradientDescentInputsNum
|
||||
<< ", but got " << inputs.size() << ".";
|
||||
return false;
|
||||
}
|
||||
if (outputs.size() != kSparseApplyProximalGradientDescentOutputsNum) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', output size must be "
|
||||
<< kSparseApplyProximalGradientDescentOutputsNum << ", but got " << outputs.size() << ".";
|
||||
return false;
|
||||
}
|
||||
if (!MatchKernelFunc(base_operator, inputs, outputs)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void SparseApplyProximalGradientDescentCpuKernelMod::ResetResouce() noexcept {
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
indices_data_type_ = kNumberTypeInt32;
|
||||
indices_size_ = 0;
|
||||
var_first_dim_size_ = 0;
|
||||
var_outer_dim_size_ = 1;
|
||||
}
|
||||
|
||||
int SparseApplyProximalGradientDescentCpuKernelMod::Resize(const BaseOperatorPtr &base_operator,
|
||||
const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &) {
|
||||
ResetResouce();
|
||||
int ret = KernelMod::Resize(base_operator, inputs, outputs);
|
||||
if (ret != KRET_OK) {
|
||||
return ret;
|
||||
}
|
||||
enum input_index : size_t { Var_no, Alpha_no, L1_no, L2_no, Grad_no, Indices_no };
|
||||
ShapeVector var_shape = inputs[Var_no]->GetShapeVector();
|
||||
ShapeVector alpha_shape = inputs[Alpha_no]->GetShapeVector();
|
||||
ShapeVector l1_shape = inputs[L1_no]->GetShapeVector();
|
||||
ShapeVector l2_shape = inputs[L2_no]->GetShapeVector();
|
||||
ShapeVector grad_shape = inputs[Grad_no]->GetShapeVector();
|
||||
ShapeVector indices_shape = inputs[Indices_no]->GetShapeVector();
|
||||
if (var_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, var must be at least 1D.";
|
||||
} else {
|
||||
var_first_dim_size_ = var_shape[0];
|
||||
}
|
||||
if (var_shape.size() != grad_shape.size()) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, rank(grad) should be same as rank(var), but "
|
||||
"got rank(grad): "
|
||||
<< grad_shape.size() << ", rank(var): " << var_shape.size() << ".";
|
||||
}
|
||||
for (size_t i = 1; i < var_shape.size(); ++i) {
|
||||
if (var_shape[i] != grad_shape[i]) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, the shape of var and grad must equal in dimension "
|
||||
<< i << ".";
|
||||
}
|
||||
var_outer_dim_size_ *= var_shape[i];
|
||||
}
|
||||
if (indices_shape.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, indices must be 1D, but got " << indices_shape.size()
|
||||
<< "D.";
|
||||
}
|
||||
indices_size_ = indices_shape[0];
|
||||
if (grad_shape[0] != SizeToLong(indices_size_)) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, grad.shape[0] must be equal to indices.shape[0], but "
|
||||
"got grad.shape[0]: "
|
||||
<< grad_shape[0] << " indices.shape[0]: " << indices_size_ << ".";
|
||||
}
|
||||
if (!alpha_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, alpha is not a scalar, got shape: "
|
||||
<< Vector2Str(alpha_shape) << ".";
|
||||
}
|
||||
if (!l1_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, l1 is not a scalar, got shape: "
|
||||
<< Vector2Str(l1_shape) << ".";
|
||||
}
|
||||
if (!l2_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, l2 is not a scalar, got shape: "
|
||||
<< Vector2Str(l2_shape) << ".";
|
||||
}
|
||||
return KRET_OK;
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
bool SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kSparseApplyProximalGradientDescentInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kSparseApplyProximalGradientDescentOutputsNum, kernel_name_);
|
||||
|
||||
auto var = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto grad = reinterpret_cast<T *>(inputs[4]->addr);
|
||||
auto indices = reinterpret_cast<I *>(inputs[5]->addr);
|
||||
auto alpha_scalar = reinterpret_cast<T *>(inputs[1]->addr)[0];
|
||||
auto l1_scalar = reinterpret_cast<T *>(inputs[2]->addr)[0];
|
||||
auto l2_scalar = reinterpret_cast<T *>(inputs[3]->addr)[0];
|
||||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
for (size_t i = 0; i < indices_size_; i++) {
|
||||
I index = indices[i];
|
||||
if (index < 0 || LongToSize(index) >= var_first_dim_size_) {
|
||||
MS_LOG(EXCEPTION)
|
||||
<< "For SparseApplyProximalGradientDescent, values in indices should be [0, var.shape[0]), but got " << index
|
||||
<< ".";
|
||||
}
|
||||
size_t start_index = var_outer_dim_size_ * static_cast<size_t>(index);
|
||||
size_t end_index = start_index + var_outer_dim_size_;
|
||||
for (size_t j = start_index, k = var_outer_dim_size_ * i; j < end_index; ++j, ++k) {
|
||||
auto learning_rate = alpha_scalar;
|
||||
auto prox_v = var[j];
|
||||
prox_v -= grad[k] * learning_rate;
|
||||
if (l1_scalar > static_cast<T>(0.0)) {
|
||||
var[j] = (T)Sign(static_cast<double>(prox_v)) *
|
||||
(T)std::fmax(std::fabs(static_cast<double>(prox_v)) -
|
||||
static_cast<double>(learning_rate) * static_cast<double>(l1_scalar),
|
||||
static_cast<double>(0.0)) /
|
||||
(static_cast<T>(1.0) + l2_scalar * learning_rate);
|
||||
} else {
|
||||
var[j] = prox_v / (static_cast<T>(1.0) + l2_scalar * learning_rate);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t copy_size = var_first_dim_size_ * var_outer_dim_size_ * sizeof(T);
|
||||
auto ret = memcpy_s(output, copy_size, var, copy_size);
|
||||
if (ret != 0) {
|
||||
MS_LOG(EXCEPTION) << "For SparseApplyProximalGradientDescent, memcpy_s error, errorno: " << ret << ".";
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
const std::vector<std::pair<KernelAttr, KernelRunFunc>> &SparseApplyProximalGradientDescentCpuKernelMod::GetFuncList()
|
||||
const {
|
||||
static const std::vector<std::pair<KernelAttr, KernelRunFunc>> func_list_ = {
|
||||
{ADD_KERNEL(Int8, Int8, Int8, Int8, Int8, Int32, Int8),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, int8_t>},
|
||||
{ADD_KERNEL(Int16, Int16, Int16, Int16, Int16, Int32, Int16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, int16_t>},
|
||||
{ADD_KERNEL(Int32, Int32, Int32, Int32, Int32, Int32, Int32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, int32_t>},
|
||||
{ADD_KERNEL(Int64, Int64, Int64, Int64, Int64, Int32, Int64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, int64_t>},
|
||||
{ADD_KERNEL(UInt8, UInt8, UInt8, UInt8, UInt8, Int32, UInt8),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, uint8_t>},
|
||||
{ADD_KERNEL(UInt16, UInt16, UInt16, UInt16, UInt16, Int32, UInt16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, uint16_t>},
|
||||
{ADD_KERNEL(UInt32, UInt32, UInt32, UInt32, UInt32, Int32, UInt32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, uint32_t>},
|
||||
{ADD_KERNEL(UInt64, UInt64, UInt64, UInt64, UInt64, Int32, UInt64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, uint64_t>},
|
||||
{ADD_KERNEL(Float16, Float16, Float16, Float16, Float16, Int32, Float16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, float16>},
|
||||
{ADD_KERNEL(Float32, Float32, Float32, Float32, Float32, Int32, Float32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, float>},
|
||||
{ADD_KERNEL(Float64, Float64, Float64, Float64, Float64, Int32, Float64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int32_t, double>},
|
||||
{ADD_KERNEL(Int8, Int8, Int8, Int8, Int8, Int64, Int8),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, int8_t>},
|
||||
{ADD_KERNEL(Int16, Int16, Int16, Int16, Int16, Int64, Int16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, int16_t>},
|
||||
{ADD_KERNEL(Int32, Int32, Int32, Int32, Int32, Int64, Int32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, int32_t>},
|
||||
{ADD_KERNEL(Int64, Int64, Int64, Int64, Int64, Int64, Int64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, int64_t>},
|
||||
{ADD_KERNEL(UInt8, UInt8, UInt8, UInt8, UInt8, Int64, UInt8),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, uint8_t>},
|
||||
{ADD_KERNEL(UInt16, UInt16, UInt16, UInt16, UInt16, Int64, UInt16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, uint16_t>},
|
||||
{ADD_KERNEL(UInt32, UInt32, UInt32, UInt32, UInt32, Int64, UInt32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, uint32_t>},
|
||||
{ADD_KERNEL(UInt64, UInt64, UInt64, UInt64, UInt64, Int64, UInt64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, uint64_t>},
|
||||
{ADD_KERNEL(Float16, Float16, Float16, Float16, Float16, Int64, Float16),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, float16>},
|
||||
{ADD_KERNEL(Float32, Float32, Float32, Float32, Float32, Int64, Float32),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, float>},
|
||||
{ADD_KERNEL(Float64, Float64, Float64, Float64, Float64, Int64, Float64),
|
||||
&SparseApplyProximalGradientDescentCpuKernelMod::LaunchKernel<int64_t, double>}};
|
||||
return func_list_;
|
||||
}
|
||||
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseApplyProximalGradientDescent,
|
||||
SparseApplyProximalGradientDescentCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,61 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_CPU_KERNEL_H_
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#include "mindspore/core/ops/sparse_apply_proximal_gradient_descent.h"
|
||||
#include "plugin/device/cpu/kernel/sparse_optimizer_cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SparseApplyProximalGradientDescentCpuKernelMod
|
||||
: public SparseOptimizerCpuKernelMod,
|
||||
public MatchKernelHelper<SparseApplyProximalGradientDescentCpuKernelMod> {
|
||||
public:
|
||||
SparseApplyProximalGradientDescentCpuKernelMod() = default;
|
||||
~SparseApplyProximalGradientDescentCpuKernelMod() override = default;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override {
|
||||
return kernel_func_(this, inputs, workspace, outputs);
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs);
|
||||
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) override;
|
||||
|
||||
const std::vector<std::pair<KernelAttr, KernelRunFunc>> &GetFuncList() const override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override { return OpSupport(); }
|
||||
void ResetResouce() noexcept;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_CPU_KERNEL_H_
|
|
@ -249,6 +249,7 @@ constexpr auto kSparseApplyAdagradDA = "SparseApplyAdagradDA";
|
|||
constexpr auto kMaxPool3DWithArgmax = "MaxPool3DWithArgmax";
|
||||
constexpr auto kUpsampleTrilinear3DGrad = "UpsampleTrilinear3DGrad";
|
||||
constexpr auto kIFMR = "IFMR";
|
||||
constexpr auto kSparseApplyProximalGradientDescent = "SparseApplyProximalGradientDescent";
|
||||
|
||||
// Random
|
||||
constexpr auto kStandardNormal = "StandardNormal";
|
||||
|
@ -814,6 +815,8 @@ GVAR_DEF(PrimitivePtr, kPrimAdaptiveMaxPool2DGrad, std::make_shared<Primitive>("
|
|||
GVAR_DEF(PrimitivePtr, kPrimUpsampleNearest3DGrad, std::make_shared<Primitive>("UpsampleNearest3DGrad"));
|
||||
GVAR_DEF(PrimitivePtr, kPrimUpsampleTrilinear3DGrad, std::make_shared<Primitive>("UpsampleTrilinear3DGrad"));
|
||||
GVAR_DEF(PrimitivePtr, kPrimIFMR, std::make_shared<Primitive>(kIFMR));
|
||||
GVAR_DEF(PrimitivePtr, kPrimSparseApplyProximalGradientDescent,
|
||||
std::make_shared<Primitive>(kSparseApplyProximalGradientDescent));
|
||||
|
||||
// Comm ops
|
||||
GVAR_DEF(PrimitivePtr, kPrimMirror, std::make_shared<Primitive>("_MirrorOperator"));
|
||||
|
|
|
@ -0,0 +1,121 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/sparse_apply_proximal_gradient_descent.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
|
||||
#include "abstract/ops/primitive_infer_map.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "mindapi/src/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr SparseApplyProximalGradientDescentInferShape(const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto var_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
auto alpha_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->BuildShape())[kShape];
|
||||
auto l1_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[2]->BuildShape())[kShape];
|
||||
auto l2_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[3]->BuildShape())[kShape];
|
||||
auto grad_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[4]->BuildShape())[kShape];
|
||||
auto indices_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[5]->BuildShape())[kShape];
|
||||
|
||||
auto scalar_shape = 0;
|
||||
(void)CheckAndConvertUtils::CheckInteger("alpha_shape size", alpha_shape.size(), kEqual, scalar_shape, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("l1_shape size", l1_shape.size(), kEqual, scalar_shape, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("l2_shape size", l2_shape.size(), kEqual, scalar_shape, prim_name);
|
||||
|
||||
// Var dimension must be equal or greater than 1.
|
||||
(void)CheckAndConvertUtils::CheckInteger("var dimension", var_shape.size(), kGreaterEqual, 1, prim_name);
|
||||
|
||||
if (var_shape.size() != grad_shape.size()) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim_name
|
||||
<< "', rank(grad) should be same as rank(var), but got rank(grad): " << grad_shape.size()
|
||||
<< ", rank(var): " << var_shape.size() << ".";
|
||||
}
|
||||
|
||||
for (size_t i = 1; i < var_shape.size(); ++i) {
|
||||
if (var_shape[i] != grad_shape[i]) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim_name << "'. the shape of var and grad must equal in dimension " << i
|
||||
<< ".";
|
||||
}
|
||||
}
|
||||
|
||||
// Indices must be rank 1.
|
||||
(void)CheckAndConvertUtils::CheckInteger("indices dimension", indices_shape.size(), kEqual, 1, prim_name);
|
||||
if (indices_shape[0] != grad_shape[0]) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim_name
|
||||
<< "', grad.shape[0] must be equal to indices.shape[0], but got grad.shape[0]: "
|
||||
<< grad_shape[0] << ", indices.shape[0]: " << indices_shape[0] << ".";
|
||||
}
|
||||
return std::make_shared<abstract::Shape>(var_shape);
|
||||
}
|
||||
|
||||
TypePtr SparseApplyProximalGradientDescentInferType(const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto var_type = input_args[0]->BuildType();
|
||||
auto alpha_type = input_args[1]->BuildType();
|
||||
auto l1_type = input_args[2]->BuildType();
|
||||
auto l2_type = input_args[3]->BuildType();
|
||||
auto grad_type = input_args[4]->BuildType();
|
||||
auto indices_type = input_args[5]->BuildType();
|
||||
|
||||
std::map<std::string, TypePtr> args;
|
||||
(void)args.insert({"var", var_type});
|
||||
(void)args.insert({"alpha", alpha_type});
|
||||
(void)args.insert({"l1", l1_type});
|
||||
(void)args.insert({"l2", l2_type});
|
||||
(void)args.insert({"grad", grad_type});
|
||||
(void)CheckAndConvertUtils::CheckScalarOrTensorTypesSame(args, common_valid_types, prim_name);
|
||||
|
||||
const std::set<TypePtr> valid_types = {kInt32, kInt64};
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("indices", indices_type, valid_types, prim_name);
|
||||
return var_type;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
MIND_API_OPERATOR_IMPL(SparseApplyProximalGradientDescent, BaseOperator);
|
||||
void SparseApplyProximalGradientDescent::Init(const bool use_locking) { this->set_use_locking(use_locking); }
|
||||
|
||||
void SparseApplyProximalGradientDescent::set_use_locking(const bool use_locking) {
|
||||
(void)this->AddAttr(kUseLocking, api::MakeValue(use_locking));
|
||||
}
|
||||
|
||||
bool SparseApplyProximalGradientDescent::get_use_locking() const {
|
||||
auto value_ptr = GetAttr(kUseLocking);
|
||||
return GetValue<bool>(value_ptr);
|
||||
}
|
||||
|
||||
AbstractBasePtr SparseApplyProximalGradientDescentInfer(const abstract::AnalysisEnginePtr &,
|
||||
const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const int Inputs_num = 6;
|
||||
(void)CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, Inputs_num, primitive->name());
|
||||
auto infer_type = SparseApplyProximalGradientDescentInferType(primitive, input_args);
|
||||
auto infer_shape = SparseApplyProximalGradientDescentInferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(infer_shape, infer_type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(SparseApplyProximalGradientDescent, prim::kPrimSparseApplyProximalGradientDescent,
|
||||
SparseApplyProximalGradientDescentInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,51 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_H_
|
||||
#define MINDSPORE_CORE_OPS_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameSparseApplyProximalGradientDescent = "SparseApplyProximalGradientDescent";
|
||||
class MIND_API SparseApplyProximalGradientDescent : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(SparseApplyProximalGradientDescent);
|
||||
SparseApplyProximalGradientDescent() : BaseOperator(kNameSparseApplyProximalGradientDescent) {}
|
||||
|
||||
void Init(const bool use_locking = false);
|
||||
|
||||
void set_use_locking(const bool use_locking);
|
||||
|
||||
bool get_use_locking() const;
|
||||
};
|
||||
|
||||
abstract::AbstractBasePtr SparseApplyProximalGradientDescentInfer(const abstract::AnalysisEnginePtr &,
|
||||
const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using kPrimSparseApplyProximalGradientDescentPtr = std::shared_ptr<SparseApplyProximalGradientDescent>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_SPARSE_APPLY_PROXIMAL_GRADIENT_DESCENT_H_
|
|
@ -278,3 +278,4 @@ from .sparse_matrix_transpose import _sparse_matrix_transpose_aicpu
|
|||
from .sparse_tensor_to_csr_sparse_matrix import _sparse_tensor_to_csr_sparse_matrix_aicpu
|
||||
from .csr_sparse_matrix_to_sparse_tensor import _csr_sparse_matrix_to_sparse_tensor_aicpu
|
||||
from .split import _split_aicpu
|
||||
from .sparse_apply_proximal_gradient_descent import _sparse_apply_proximal_gradient_descent_aicpu
|
||||
|
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SparseApplyProximalGradientDescent"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
sparse_apply_proximal_gradient_descent_op_info = AiCPURegOp("SparseApplyProximalGradientDescent") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("use_locking", "bool") \
|
||||
.input(0, "var", "required") \
|
||||
.input(1, "alpha", "required") \
|
||||
.input(2, "l1", "required") \
|
||||
.input(3, "l2", "required") \
|
||||
.input(4, "grad", "required") \
|
||||
.input(5, "indices", "required") \
|
||||
.output(0, "var", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default, DataType.I8_Default, \
|
||||
DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.I16_Default, DataType.I16_Default, \
|
||||
DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default, DataType.U8_Default, \
|
||||
DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.U16_Default, DataType.U16_Default, \
|
||||
DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.U32_Default, DataType.U32_Default, \
|
||||
DataType.U32_Default, DataType.I32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.U64_Default, DataType.U64_Default, \
|
||||
DataType.U64_Default, DataType.I32_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, \
|
||||
DataType.F16_Default, DataType.I32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, \
|
||||
DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.F64_Default, DataType.F64_Default, \
|
||||
DataType.F64_Default, DataType.I32_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default, DataType.I8_Default, \
|
||||
DataType.I8_Default, DataType.I64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.I16_Default, DataType.I16_Default, \
|
||||
DataType.I16_Default, DataType.I64_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default, DataType.U8_Default, \
|
||||
DataType.U8_Default, DataType.I64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.U16_Default, DataType.U16_Default, \
|
||||
DataType.U16_Default, DataType.I64_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.U32_Default, DataType.U32_Default, \
|
||||
DataType.U32_Default, DataType.I64_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.U64_Default, DataType.U64_Default, \
|
||||
DataType.U64_Default, DataType.I64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, \
|
||||
DataType.F16_Default, DataType.I64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, \
|
||||
DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.F64_Default, DataType.F64_Default, \
|
||||
DataType.F64_Default, DataType.I64_Default, DataType.F64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(sparse_apply_proximal_gradient_descent_op_info)
|
||||
def _sparse_apply_proximal_gradient_descent_aicpu():
|
||||
"""SparseApplyProximalGradientDescent"""
|
||||
return
|
|
@ -10485,3 +10485,86 @@ class SparseApplyAdagradDA(Primitive):
|
|||
'grad', 'indices', 'lr', 'l1', 'l2', 'global_step'],
|
||||
outputs=['var'])
|
||||
validator.check_value_type("use_locking", use_locking, [bool], self.name)
|
||||
|
||||
|
||||
class SparseApplyProximalGradientDescent(Primitive):
|
||||
r"""
|
||||
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
||||
|
||||
.. math::
|
||||
\begin{array}{ll} \\
|
||||
\text{prox_v} = var - alpha \\
|
||||
var = sign(\text{prox_v})/(1 + alpha * l2) * \max(\left| \text{prox_v} \right| - alpha * l1,0)
|
||||
\end{array}
|
||||
|
||||
Inputs of `var` and `delta` comply with the implicit type conversion rules to make the data types consistent.
|
||||
If they have different data types, the lower priority data type will be converted to
|
||||
the relatively highest priority data type.
|
||||
|
||||
Args:
|
||||
use_locking (bool): If `True`, the `var` tensors will be protected from being updated.
|
||||
Default: False.
|
||||
|
||||
Inputs:
|
||||
- **var** (Parameter) - Variable tensor to be updated. The data type must be int8, int16, int32, int64,
|
||||
uint8, uint16, uint32, uint64, float16, float32 or float64.
|
||||
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
||||
- **alpha** (Union[Number, Tensor]) - Scaling factor. Must be a scalar with same type as `var`.
|
||||
- **l1** (Union[Number, Tensor]) - L1 regularization. Must be a scalar with same type as `var`.
|
||||
- **l2** (Union[Number, Tensor]) - l2 regularization. Must be a scalar with same type as `var`.
|
||||
- **grad** (Tensor) - A tensor for gradient, has the same type as `var`,
|
||||
and grad.shape[1:] = var.shape[1:] if rank(var) > 1.
|
||||
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
|
||||
If there are duplicates in `indices`, the behavior is undefined. Must be one of the
|
||||
following types: int32, int64 and indices.shape[0] = grad.shape[0].
|
||||
|
||||
Outputs:
|
||||
- **var** (Tensor) - Tensor, has the same shape and type as 'var'.
|
||||
|
||||
Raises:
|
||||
TypeError: If `var`, `grad` or `indices` is not a Parameter..
|
||||
TypeError: If `alpha`, `l1`, `l2` is neither a Number nor a Tensor.
|
||||
TypeError: If `use_locking` is not a bool.
|
||||
TypeError: If dtype of `var`, `alpha`, `l1`, `l2` or `grad` is not one of int8, int16,
|
||||
int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64.
|
||||
TypeError: If dtype of `indices` is neither int32 nor int64.
|
||||
ValueError: If the shape of `var` or `grad` is rank 0.
|
||||
ValueError: If shape of `grad` is not same as `var`.
|
||||
ValueError: If the shape of `alpha`, `l1` or `l2` is not rank 0.
|
||||
ValueError: If shape of `indices` is not same as the shape of first dimension of `grad`.
|
||||
RuntimeError: If the data type of `var`, `alpha`, `l1`, `l2`, `grad` conversion of Parameter
|
||||
is not supported.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.ops.operations.nn_ops as nn_ops
|
||||
>>> var = Tensor(np.array([[4.1, 7.2], [1.1, 3.0]]).astype(np.float32))
|
||||
>>> alpha = Tensor(1.0, mstype.float32)
|
||||
>>> l1 = Tensor(1.0, mstype.float32)
|
||||
>>> l2 = Tensor(0.0, mstype.float32)
|
||||
>>> grad = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32))
|
||||
>>> indices = Tensor(np.array([0, 1]).astype(np.int32))
|
||||
>>> sparse_apply_proximal_gradient_descent = nn_ops.SparseApplyProximalGradientDescent()
|
||||
>>> output = sparse_apply_proximal_gradient_descent(var, alpha, l1, l2, grad, indices)
|
||||
>>> print(output)
|
||||
[[2.1 5.2]
|
||||
[0. 1. ]]
|
||||
"""
|
||||
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('var', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('alpha', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('l1', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('l2', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('grad', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('indices', dtype=sig.sig_dtype.T1)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, use_locking=False):
|
||||
"""Initialize SparseApplyProximalGradientDescent."""
|
||||
self.init_prim_io_names(inputs=['var', 'alpha', 'l1', 'l2', 'grad', 'indices'],
|
||||
outputs=['var'])
|
||||
validator.check_value_type("use_locking", use_locking, [bool], self.name)
|
||||
|
|
|
@ -114,6 +114,7 @@ from mindspore.ops.operations.sparse_ops import CSRSparseMatrixToSparseTensor
|
|||
from mindspore.ops.operations.sparse_ops import SparseTensorToCSRSparseMatrix
|
||||
from mindspore.ops.operations.other_ops import BlackmanWindow
|
||||
from mindspore.ops.operations.nn_ops import SparseApplyCenteredRMSProp
|
||||
from mindspore.ops.operations.nn_ops import SparseApplyProximalGradientDescent
|
||||
from mindspore.nn.layer import normalization
|
||||
from mindspore.ops.operations.array_ops import RightShift
|
||||
from mindspore.ops.operations.array_ops import LeftShift
|
||||
|
@ -1289,6 +1290,16 @@ class SparseApplyAdagradDANet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class SparseApplyProximalGradientDescentNet(nn.Cell):
|
||||
def __init__(self, use_locking=False):
|
||||
super(SparseApplyProximalGradientDescentNet, self).__init__()
|
||||
self.sparse_apply_proximal_gradient_descent = SparseApplyProximalGradientDescent(use_locking)
|
||||
|
||||
def construct(self, var, alpha, l1, l2, grad, indices):
|
||||
out = self.sparse_apply_proximal_gradient_descent(var, alpha, l1, l2, grad, indices)
|
||||
return out
|
||||
|
||||
|
||||
test_case_math_ops = [
|
||||
('Betainc', {
|
||||
'block': Betainc(),
|
||||
|
@ -3028,6 +3039,15 @@ test_case_nn_ops = [
|
|||
Tensor(0.001, mstype.float32),
|
||||
Tensor(1, mstype.int64)],
|
||||
'skip': ['backward']}),
|
||||
('SparseApplyProximalGradientDescent', {
|
||||
'block': SparseApplyProximalGradientDescentNet(),
|
||||
'desc_inputs': [Tensor(np.array([[0.4, 0.5], [0.3, 0.1]]).astype(np.float32)),
|
||||
Tensor(0.01, mstype.float32),
|
||||
Tensor(0.88, mstype.float32),
|
||||
Tensor(0.3, mstype.float32),
|
||||
Tensor(np.array([[0.2, 0.5], [0.3, 0.2]]).astype(np.float32)),
|
||||
Tensor(np.array([0, 1]).astype(np.int32))],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
test_case_array_ops = [
|
||||
('LeftShift', {
|
||||
|
|
Loading…
Reference in New Issue