forked from mindspore-Ecosystem/mindspore
!7529 complex arithmetic_simplify
Merge pull request !7529 from zhuxiaochen/1020_allsimplify_1.0
This commit is contained in:
commit
8d39a8a4b2
|
@ -14,18 +14,18 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/optimizer/graph_kernel/arithmetic_simplify.h"
|
||||
|
||||
#include <list>
|
||||
#include "backend/optimizer/graph_kernel/graph_kernel_helper.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "ir/pattern_matcher.h"
|
||||
#include "frontend/operator/ops.h"
|
||||
#include "ir/pattern_matcher.h"
|
||||
#include "utils/convert_utils.h"
|
||||
#include "utils/utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
|
||||
AnfNodePtr NewCNodeWithInfo(const AnfNodePtrList &inputs, const AnfNodePtr &ori_node) {
|
||||
auto func_graph = ori_node->func_graph();
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
|
@ -401,10 +401,236 @@ AnfNodePtr SimplifyDiv(const AnfNodePtr &node) {
|
|||
(FLAG) = true; \
|
||||
}
|
||||
|
||||
bool TryTransposeToReshape(const AnfNodePtr &node) {
|
||||
auto perm = AnfAlgo::GetNodeAttr<std::vector<int>>(node, "perm");
|
||||
auto ori_shape = AnfAlgo::GetPrevNodeOutputInferShape(node, 0);
|
||||
std::vector<int> remove_one_perm;
|
||||
for (auto idx : perm) {
|
||||
if (idx < 0 || IntToSize(idx) >= ori_shape.size()) {
|
||||
MS_EXCEPTION(ValueError);
|
||||
return false;
|
||||
}
|
||||
if (ori_shape[idx] != 1) {
|
||||
remove_one_perm.emplace_back(idx);
|
||||
}
|
||||
}
|
||||
if (remove_one_perm.size() < 2) {
|
||||
return true;
|
||||
}
|
||||
for (size_t idx = 1; idx < remove_one_perm.size(); idx++) {
|
||||
if (remove_one_perm[idx] < remove_one_perm[idx - 1]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
AnfNodePtr SimplifyTranspose(const AnfNodePtr &node) {
|
||||
if (!IsPrimitiveCNode(node, prim::kPrimTranspose)) {
|
||||
return nullptr;
|
||||
}
|
||||
if (TryTransposeToReshape(node)) {
|
||||
auto new_cnode = NewCNodeWithInfo({NewValueNode(prim::kPrimReshape), node->cast<CNodePtr>()->input(1)}, node);
|
||||
return new_cnode;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
AnfNodePtr SimplifyMatMul(const AnfNodePtr &node) {
|
||||
if (!IsPrimitiveCNode(node, prim::kPrimMatMul)) {
|
||||
return nullptr;
|
||||
}
|
||||
PatternNode<AnfNodePtr> x, y;
|
||||
auto matmul_transpose_lambda = [&node, &x, &y]() -> AnfNodePtr {
|
||||
auto new_matmul = NewCNodeWithInfo({NewValueNode(prim::kPrimMatMul), y.GetNode(node), x.GetNode(node)}, node);
|
||||
auto new_abstract = node->abstract()->Clone();
|
||||
auto ori_shape = node->abstract()->GetShapeTrack()->cast<abstract::ShapePtr>();
|
||||
auto shape_value = ori_shape->shape();
|
||||
ShapeVector new_shape_value;
|
||||
std::copy(shape_value.rbegin(), shape_value.rend(), std::back_inserter(new_shape_value));
|
||||
auto new_shape = std::make_shared<abstract::Shape>(new_shape_value);
|
||||
new_abstract->set_shape(new_shape);
|
||||
new_matmul->set_abstract(new_abstract);
|
||||
auto new_cnode = NewCNodeWithInfo({NewValueNode(prim::kPrimTranspose), new_matmul}, node);
|
||||
auto transpose_a = AnfAlgo::GetNodeAttr<ValuePtr>(node, "transpose_a");
|
||||
auto transpose_b = AnfAlgo::GetNodeAttr<ValuePtr>(node, "transpose_b");
|
||||
auto transpose_x1 = AnfAlgo::GetNodeAttr<ValuePtr>(node, "transpose_x1");
|
||||
auto transpose_x2 = AnfAlgo::GetNodeAttr<ValuePtr>(node, "transpose_x2");
|
||||
auto perm = AnfAlgo::GetNodeAttr<ValuePtr>(node->cast<CNodePtr>()->input(1), "perm");
|
||||
AnfAlgo::SetNodeAttr("transpose_a", transpose_b, new_matmul);
|
||||
AnfAlgo::SetNodeAttr("transpose_b", transpose_a, new_matmul);
|
||||
AnfAlgo::SetNodeAttr("transpose_x1", transpose_x2, new_matmul);
|
||||
AnfAlgo::SetNodeAttr("transpose_x2", transpose_x1, new_matmul);
|
||||
AnfAlgo::SetNodeAttr("perm", perm, new_cnode);
|
||||
return new_cnode;
|
||||
};
|
||||
// MatMul(Transpose(x), Transpose(y)) ==> Transpose(MatMul(y, x))
|
||||
MATCH_REPLACE_LAMBDA(node,
|
||||
PBinOperation(prim::kPrimMatMul, PUnaryOperation(prim::kPrimTranspose, x),
|
||||
PUnaryOperation(prim::kPrimTranspose, y), false),
|
||||
matmul_transpose_lambda);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ShapeVector TransAxisValueToVector(const ValuePtr &value) {
|
||||
MS_EXCEPTION_IF_NULL(value);
|
||||
ShapeVector axis_vector;
|
||||
if (value->isa<Int32Imm>()) {
|
||||
axis_vector.emplace_back(GetValue<int>(value));
|
||||
}
|
||||
if (value->isa<ValueTuple>() || value->isa<ValueList>()) {
|
||||
axis_vector = GetValue<std::vector<int>>(value);
|
||||
}
|
||||
return axis_vector;
|
||||
}
|
||||
|
||||
ShapeVector GetNodeShape(const AnfNodePtr &node) {
|
||||
auto base_shape = node->Shape()->cast<abstract::ShapePtr>();
|
||||
std::vector<int> shape;
|
||||
std::transform(base_shape->shape().begin(), base_shape->shape().end(), std::back_inserter(shape), IntToSize);
|
||||
return shape;
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> GetUnmodifiedDim(const ShapeVector &a, const ShapeVector &b) {
|
||||
std::vector<std::pair<int, int>> unmodified;
|
||||
for (size_t i = 0, j = 0, patial_a = 1, patial_b = 1;;) {
|
||||
if (i >= a.size() && j >= b.size()) {
|
||||
break;
|
||||
}
|
||||
patial_a *= a[i];
|
||||
patial_b *= b[j];
|
||||
if (patial_a == patial_b && a[i] == b[j]) {
|
||||
unmodified.emplace_back(std::make_pair(i, j));
|
||||
++i;
|
||||
++j;
|
||||
continue;
|
||||
}
|
||||
if (patial_a < patial_b && b[j] > a[i]) {
|
||||
++i;
|
||||
patial_a *= a[i];
|
||||
if (patial_a == patial_b) {
|
||||
++i;
|
||||
++j;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (patial_a > patial_b && b[j] < a[i]) {
|
||||
++j;
|
||||
patial_b *= b[j];
|
||||
if (patial_a == patial_b) {
|
||||
++i;
|
||||
++j;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return unmodified;
|
||||
}
|
||||
|
||||
AnfNodePtr SimplifyReduce(const AnfNodePtr &node) {
|
||||
if (!IsPrimitiveCNode(node, prim::kPrimReduceMax) && !IsPrimitiveCNode(node, prim::kPrimReduceMin) &&
|
||||
!IsPrimitiveCNode(node, prim::kPrimReduceSum)) {
|
||||
return nullptr;
|
||||
}
|
||||
PatternNode<AnfNodePtr> x;
|
||||
auto trans_reduce_lamda = [&node, &x](PrimitivePtr &operation) -> AnfNodePtr {
|
||||
auto shape = GetNodeShape(node);
|
||||
if (shape.size() != 0 && shape.size() != 1) {
|
||||
return node;
|
||||
} else {
|
||||
auto tmp_node = node->cast<CNodePtr>();
|
||||
auto transpose_node = tmp_node->input(1);
|
||||
auto transpose_dimensions = GetValue<std::vector<int>>(AnfAlgo::GetNodeAttr<ValuePtr>(transpose_node, "perm"));
|
||||
ShapeVector new_dimensions;
|
||||
auto reduce_dimensions = TransAxisValueToVector(AnfAlgo::GetNodeAttr<ValuePtr>(tmp_node, "axis"));
|
||||
std::transform(reduce_dimensions.begin(), reduce_dimensions.end(), std::back_inserter(new_dimensions),
|
||||
[&transpose_dimensions](const int &dim) { return transpose_dimensions[dim]; });
|
||||
std::sort(new_dimensions.begin(), new_dimensions.end());
|
||||
auto new_cnode = NewCNodeWithInfo({NewValueNode(operation), x.GetNode(node)}, node);
|
||||
AnfAlgo::SetNodeAttr("axis", MakeValue(new_dimensions), new_cnode);
|
||||
AnfAlgo::CopyNodeAttr("keep_dims", node, new_cnode);
|
||||
return new_cnode;
|
||||
}
|
||||
};
|
||||
auto reduce_reduce_lamda = [&node, &x](PrimitivePtr &operation) -> AnfNodePtr {
|
||||
auto tmp_node = node->cast<CNodePtr>();
|
||||
auto arg_node = tmp_node->input(1);
|
||||
auto arg_dimensions = TransAxisValueToVector(AnfAlgo::GetNodeAttr<ValuePtr>(arg_node, "axis"));
|
||||
auto reduce_dimensions = TransAxisValueToVector(AnfAlgo::GetNodeAttr<ValuePtr>(tmp_node, "axis"));
|
||||
ShapeVector new_dimensions;
|
||||
for (size_t i = 0; i < arg_dimensions.size(); ++i) {
|
||||
for (size_t j = 0; j < reduce_dimensions.size(); ++j) {
|
||||
if (reduce_dimensions[j] >= arg_dimensions[i]) {
|
||||
++reduce_dimensions[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
std::merge(arg_dimensions.begin(), arg_dimensions.end(), reduce_dimensions.begin(), reduce_dimensions.end(),
|
||||
std::back_inserter(new_dimensions));
|
||||
auto new_cnode = NewCNodeWithInfo({NewValueNode(operation), x.GetNode(node)}, node);
|
||||
AnfAlgo::SetNodeAttr("axis", MakeValue(new_dimensions), new_cnode);
|
||||
AnfAlgo::CopyNodeAttr("keep_dims", node, new_cnode);
|
||||
return new_cnode;
|
||||
};
|
||||
auto reshape_reduce_lamda = [&node, &x](PrimitivePtr &operation) -> AnfNodePtr {
|
||||
auto tmp_node = node->cast<CNodePtr>();
|
||||
auto arg_node = tmp_node->input(1);
|
||||
auto input_shape = GetNodeShape(arg_node->cast<CNodePtr>()->input(1));
|
||||
auto re_shape = GetNodeShape(arg_node);
|
||||
auto reduce_dimensions = TransAxisValueToVector(AnfAlgo::GetNodeAttr<ValuePtr>(tmp_node, "axis"));
|
||||
auto unmodified_dim_pair = GetUnmodifiedDim(input_shape, re_shape);
|
||||
std::vector<bool> dim_in_output(re_shape.size(), true);
|
||||
std::vector<bool> dim_unmodified(re_shape.size(), false);
|
||||
for (auto dim : reduce_dimensions) {
|
||||
dim_in_output[dim] = false;
|
||||
}
|
||||
for (auto pair_dim : unmodified_dim_pair) {
|
||||
dim_unmodified[pair_dim.second] = true;
|
||||
}
|
||||
bool replace = true;
|
||||
for (size_t i = 0; i < dim_in_output.size(); ++i) {
|
||||
if (dim_in_output[i] && !dim_unmodified[i]) {
|
||||
replace = false;
|
||||
}
|
||||
}
|
||||
if (replace) {
|
||||
ShapeVector un_dimensions;
|
||||
for (auto pair_dim : unmodified_dim_pair) {
|
||||
if (dim_in_output[pair_dim.second]) {
|
||||
un_dimensions.emplace_back(pair_dim.first);
|
||||
}
|
||||
}
|
||||
ShapeVector new_dimensions;
|
||||
for (size_t i = 0; i < input_shape.size(); ++i) {
|
||||
if (std::find(un_dimensions.begin(), un_dimensions.end(), i) == un_dimensions.end()) {
|
||||
new_dimensions.emplace_back(i);
|
||||
}
|
||||
}
|
||||
auto new_cnode = NewCNodeWithInfo({NewValueNode(operation), x.GetNode(node)}, node);
|
||||
AnfAlgo::SetNodeAttr("axis", MakeValue(new_dimensions), new_cnode);
|
||||
AnfAlgo::CopyNodeAttr("keep_dims", node, new_cnode);
|
||||
return new_cnode;
|
||||
}
|
||||
return node;
|
||||
};
|
||||
std::list<PrimitivePtr> ReduceOperations = {prim::kPrimReduceSum, prim::kPrimReduceMax, prim::kPrimReduceMin};
|
||||
for (auto operation : ReduceOperations) {
|
||||
// Reduce(Transpose(A)) = Reduce(A) if result is a scalar or vector
|
||||
MATCH_REPLACE_LAMBDA_FLAG(node, PPrimitive(operation, PPrimitive(prim::kPrimTranspose, x)), trans_reduce_lamda,
|
||||
operation);
|
||||
// Reduce(Reduce(A)) = Reduce(A)
|
||||
MATCH_REPLACE_LAMBDA_FLAG(node, PPrimitive(operation, PPrimitive(operation, x)), reduce_reduce_lamda, operation);
|
||||
// Reduce(Reshape(A)) = Reduce(A) if reduce dimensions is not in reshape dimensions
|
||||
MATCH_REPLACE_LAMBDA_FLAG(node, PPrimitive(operation, PPrimitive(prim::kPrimReshape, x)), reshape_reduce_lamda,
|
||||
operation);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
AnfNodePtr TrySimplify(const AnfNodePtr &node) {
|
||||
std::list<std::function<AnfNodePtr(AnfNodePtr)>> SimplifyFuncList = {
|
||||
SimplifyAdd, SimplifyDiv, SimplifyLog, SimplifyMul, SimplifyNeg,
|
||||
SimplifyPow, SimplifyRsqrt, SimplifySelect, SimplifySqrt, SimplifySub};
|
||||
SimplifyAdd, SimplifyDiv, SimplifyLog, SimplifyMul, SimplifyNeg, SimplifyPow, SimplifyRsqrt,
|
||||
SimplifySelect, SimplifySqrt, SimplifySub, SimplifyTranspose, SimplifyMatMul, SimplifyReduce};
|
||||
for (auto f : SimplifyFuncList) {
|
||||
auto ret = f(node);
|
||||
if (ret != nullptr) {
|
||||
|
|
|
@ -22,8 +22,8 @@
|
|||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/visitor.h"
|
||||
#include "base/core_ops.h"
|
||||
#include "ir/visitor.h"
|
||||
#include "utils/shape_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -750,9 +750,18 @@ class PConstant : public PBase<PConstant<T> > {
|
|||
if (value->isa<tensor::Tensor>()) {
|
||||
tensor::TensorPtr tensor_ptr = dyn_cast<tensor::Tensor>(value);
|
||||
TypeId tensor_type = tensor_ptr->Dtype()->type_id();
|
||||
auto tensor_abstract = node->abstract()->cast<abstract::AbstractTensorPtr>();
|
||||
TypePtr tensor_type_ptr = tensor_abstract->element()->BuildType();
|
||||
ShapeVector tensor_shape = tensor_abstract->shape()->shape();
|
||||
auto new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape);
|
||||
size_t mem_size = GetTypeByte(tensor_type_ptr) * IntToSize(new_tensor_ptr->ElementsNum());
|
||||
if ((tensor_type == TypeId::kNumberTypeFloat32) || (tensor_type == TypeId::kNumberTypeFloat) ||
|
||||
(tensor_type == TypeId::kNumberTypeFloat64)) {
|
||||
float *data2 = reinterpret_cast<float *>(tensor_ptr->data_c());
|
||||
float *data = reinterpret_cast<float *>(tensor_ptr->data_c());
|
||||
float *data2 = reinterpret_cast<float *>(new_tensor_ptr->data_c());
|
||||
if (memcpy_s(data2, mem_size, data, mem_size) != 0) {
|
||||
return nullptr;
|
||||
}
|
||||
for (int i = 0; i < tensor_ptr->DataSize(); i++) {
|
||||
if (data2[i] == 0 && calcu_type == prim::kPrimReciprocal) {
|
||||
return nullptr;
|
||||
|
@ -761,7 +770,11 @@ class PConstant : public PBase<PConstant<T> > {
|
|||
}
|
||||
}
|
||||
if ((tensor_type == TypeId::kNumberTypeInt32) || (tensor_type == TypeId::kNumberTypeInt)) {
|
||||
int *data2 = reinterpret_cast<int *>(tensor_ptr->data_c());
|
||||
int *data = reinterpret_cast<int *>(tensor_ptr->data_c());
|
||||
int *data2 = reinterpret_cast<int *>(new_tensor_ptr->data_c());
|
||||
if (memcpy_s(data2, mem_size, data, mem_size) != 0) {
|
||||
return nullptr;
|
||||
}
|
||||
for (int i = 0; i < tensor_ptr->DataSize(); i++) {
|
||||
if (data2[i] == 0 && calcu_type == prim::kPrimReciprocal) {
|
||||
return nullptr;
|
||||
|
@ -770,7 +783,11 @@ class PConstant : public PBase<PConstant<T> > {
|
|||
}
|
||||
}
|
||||
if (tensor_type == TypeId::kNumberTypeFloat64) {
|
||||
double *data2 = reinterpret_cast<double *>(tensor_ptr->data_c());
|
||||
double *data = reinterpret_cast<double *>(tensor_ptr->data_c());
|
||||
double *data2 = reinterpret_cast<double *>(new_tensor_ptr->data_c());
|
||||
if (memcpy_s(data2, mem_size, data, mem_size) != 0) {
|
||||
return nullptr;
|
||||
}
|
||||
for (int i = 0; i < tensor_ptr->DataSize(); i++) {
|
||||
if (data2[i] == 0 && calcu_type == prim::kPrimReciprocal) {
|
||||
return nullptr;
|
||||
|
@ -778,7 +795,9 @@ class PConstant : public PBase<PConstant<T> > {
|
|||
data2[i] = CalcuConstant(data2[i], calcu_type);
|
||||
}
|
||||
}
|
||||
return node;
|
||||
auto new_vnode = NewValueNode(new_tensor_ptr);
|
||||
new_vnode->set_abstract(tensor_ptr->ToAbstract());
|
||||
return new_vnode;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -1005,6 +1024,14 @@ BIN_OPERATION_PATTERN(operator-, prim::kPrimSub, false);
|
|||
return rep; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define MATCH_REPLACE_LAMBDA_FLAG(OrigNode, CaptureNode, Lambda, Flag) \
|
||||
if ((CaptureNode).TryCapture(OrigNode)) { \
|
||||
auto rep = (Lambda)(Flag); \
|
||||
if (rep != nullptr) { \
|
||||
return rep; \
|
||||
} \
|
||||
}
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_IR_PATTERN_MATCHER_H_
|
||||
|
|
|
@ -20,7 +20,8 @@ from mindspore import Tensor
|
|||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=True, device_target="GPU")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
|
@ -33,6 +34,8 @@ class Net(Cell):
|
|||
self.sqrt = P.Sqrt()
|
||||
self.pow = P.Pow()
|
||||
self.neg = P.Neg()
|
||||
self.reducemin = P.ReduceMin()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res1 = self.add(x, 4)
|
||||
|
@ -42,7 +45,9 @@ class Net(Cell):
|
|||
div_res = self.div(mul_res, self.sqrt(mul_res))
|
||||
pow_res = self.pow(y, 2)
|
||||
neg_res = self.neg(self.neg(pow_res))
|
||||
return self.add(div_res, neg_res)
|
||||
add_res3 = self.add(neg_res, div_res)
|
||||
resh_res = self.reshape(add_res3, (2, 12, 3))
|
||||
return self.reducemin(resh_res, 1)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -58,10 +63,12 @@ def test_basic():
|
|||
div_res = np.sqrt(mul_res)
|
||||
pow_res = input_y * input_y
|
||||
neg_res = pow_res
|
||||
expect = div_res + neg_res
|
||||
add_res3 = neg_res + div_res
|
||||
expect = np.min(add_res3, (1, 2))
|
||||
|
||||
net = Net()
|
||||
result = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4,
|
||||
atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
|
Loading…
Reference in New Issue