add ops.arccos, ops.absolute, tensor.arccos, tensor.absolute st

This commit is contained in:
fandawei 2022-11-24 16:11:13 +08:00
parent 4ea8e84b1e
commit 8d1d413de8
4 changed files with 186 additions and 0 deletions

View File

@ -0,0 +1,47 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import ops
class Net(nn.Cell):
def construct(self, x):
return ops.absolute(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_absolute(mode):
"""
Feature: absolute
Description: Verify the result of absolute
Expectation: success
"""
ms.set_context(mode=mode)
x = Tensor(np.array([-1.0, 1.0, 0.0]), ms.float32)
net = Net()
output = net(x)
expect_output = np.array([1., 1., 0.], dtype=np.float32)
assert np.allclose(output.asnumpy(), expect_output)

View File

@ -0,0 +1,47 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import ops
class Net(nn.Cell):
def construct(self, x):
return ops.arccos(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_arccos(mode):
"""
Feature: arccos
Description: Verify the result of arccos
Expectation: success
"""
ms.set_context(mode=mode)
x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), ms.float32)
net = Net()
output = net(x)
expect_output = np.array([0.737726, 1.5307857, 1.2661036, 0.9764105], dtype=np.float32)
assert np.allclose(output.asnumpy(), expect_output)

View File

@ -0,0 +1,46 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def construct(self, x):
return x.absolute()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tensor_absolute(mode):
"""
Feature: tensor.absolute
Description: Verify the result of absolute
Expectation: success
"""
ms.set_context(mode=mode)
x = Tensor(np.array([-1.0, 1.0, 0.0]), ms.float32)
net = Net()
output = net(x)
expect_output = np.array([1., 1., 0.], dtype=np.float32)
assert np.allclose(output.asnumpy(), expect_output)

View File

@ -0,0 +1,46 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def construct(self, x):
return x.arccos()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_tensor_arccos(mode):
"""
Feature: tensor.arccos
Description: Verify the result of arccos
Expectation: success
"""
ms.set_context(mode=mode)
x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), ms.float32)
net = Net()
output = net(x)
expect_output = np.array([0.737726, 1.5307857, 1.2661036, 0.9764105], dtype=np.float32)
assert np.allclose(output.asnumpy(), expect_output)