forked from mindspore-Ecosystem/mindspore
!14129 add HourNAS model zoo
From: @xinghaochen Reviewed-by: Signed-off-by:
This commit is contained in:
commit
8b796b9146
|
@ -0,0 +1,104 @@
|
|||
# Contents
|
||||
|
||||
- [HourNAS Description](#tinynet-description)
|
||||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Training Process](#training-process)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
# [HourNAS Description](#contents)
|
||||
|
||||
HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods.
|
||||
|
||||
[Paper](https://arxiv.org/abs/2005.14446): Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021.
|
||||
|
||||
# [Model architecture](#contents)
|
||||
|
||||
The overall network architecture of HourNAS is show below:
|
||||
|
||||
[Link](https://arxiv.org/abs/2005.14446)
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
- Train:146M,50,000 images
|
||||
- Test:29M,10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in src/dataset.py
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware (GPU)
|
||||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
||||
## [Script and Sample Code](#contents)
|
||||
|
||||
```markdown
|
||||
.HourNAS
|
||||
├── README.md # descriptions about HourNAS
|
||||
├── src
|
||||
│ ├── architectures.py # definition of HourNAS-F model
|
||||
│ ├── dataset.py # data preprocessing
|
||||
│ ├── hournasnet.py # HourNAS general architecture
|
||||
│ └── utils.py # utility functions
|
||||
├── eval.py # evaluation interface
|
||||
```
|
||||
|
||||
### [Training process](#contents)
|
||||
|
||||
To Be Done
|
||||
|
||||
### [Evaluation Process](#contents)
|
||||
|
||||
#### Launch
|
||||
|
||||
```bash
|
||||
# infer example
|
||||
|
||||
python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
```bash
|
||||
result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
|
||||
| Model | FLOPs (M) | Params (M) | ImageNet Top-1 |
|
||||
| --------------- | --------- | ---------- | -------------- |
|
||||
| MnasNet-A1 | 312 | 3.9 | 75.2% |
|
||||
| HourNAS-E | 313 | 3.8 | 75.7% |
|
||||
| EfficientNet-B0 | 390 | 5.3 | 76.8% |
|
||||
| HourNAS-F | 383 | 5.3 | 77.0% |
|
||||
|
||||
More details in [Paper](https://arxiv.org/abs/2005.14446).
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
We set the seed inside dataset.py.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Inference Interface"""
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
|
||||
from mindspore import context
|
||||
from mindspore import nn
|
||||
|
||||
from src.dataset import create_dataset_cifar10
|
||||
from src.utils import count_params
|
||||
from src.hournasnet import hournasnet
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
parser = argparse.ArgumentParser(description='Evaluation')
|
||||
parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/',
|
||||
metavar='DIR', help='path to dataset')
|
||||
parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL',
|
||||
help='Name of model to train (default: "tinynet_c"')
|
||||
parser.add_argument('--num-classes', type=int, default=10, metavar='N',
|
||||
help='number of label classes (default: 10)')
|
||||
parser.add_argument('-b', '--batch-size', type=int, default=256, metavar='N',
|
||||
help='input batch size for training (default: 256)')
|
||||
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
|
||||
help='how many training processes to use (default: 4)')
|
||||
parser.add_argument('--ckpt', type=str, default='./ms_hournas_f_c10.ckpt',
|
||||
help='model checkpoint to load')
|
||||
parser.add_argument('--GPU', action='store_true', default=True,
|
||||
help='Use GPU for training (default: True)')
|
||||
parser.add_argument('--dataset_sink', action='store_true', default=True)
|
||||
parser.add_argument('--image-size', type=int, default=32, metavar='N',
|
||||
help='input image size (default: 32)')
|
||||
|
||||
def main():
|
||||
"""Main entrance for training"""
|
||||
args = parser.parse_args()
|
||||
print(sys.argv)
|
||||
|
||||
#context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
if args.GPU:
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
# parse model argument
|
||||
assert args.model.startswith(
|
||||
"hournas"), "Only Tinynet models are supported."
|
||||
#_, sub_name = args.model.split("_")
|
||||
net = hournasnet(args.model,
|
||||
num_classes=args.num_classes,
|
||||
drop_rate=0.0,
|
||||
drop_connect_rate=0.0,
|
||||
global_pool="avg",
|
||||
bn_tf=False,
|
||||
bn_momentum=None,
|
||||
bn_eps=None)
|
||||
print(net)
|
||||
print("Total number of parameters:", count_params(net))
|
||||
cfg = edict({'image_height': args.image_size, 'image_width': args.image_size,})
|
||||
cfg.batch_size = args.batch_size
|
||||
print(cfg)
|
||||
|
||||
#input_size = net.default_cfg['input_size'][1]
|
||||
val_data_url = args.data_path #os.path.join(args.data_path, 'val')
|
||||
val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
|
||||
eval_metrics = {'Validation-Loss': Loss(),
|
||||
'Top1-Acc': Top1CategoricalAccuracy(),
|
||||
'Top5-Acc': Top5CategoricalAccuracy()}
|
||||
|
||||
ckpt = load_checkpoint(args.ckpt)
|
||||
load_param_into_net(net, ckpt)
|
||||
net.set_train(False)
|
||||
|
||||
model = Model(net, loss, metrics=eval_metrics)
|
||||
|
||||
metrics = model.eval(val_dataset, dataset_sink_mode=False)
|
||||
print(metrics)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.hournasnet import hournasnet
|
||||
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == 'HourNAS':
|
||||
return hournasnet(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Architecture of HourNAS"""
|
||||
predefine_archs = {
|
||||
'hournas_f_c10': {
|
||||
'genotypes': [
|
||||
#'conv3bnrelu',
|
||||
'ir_k3_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k5_e1_se', 'ir_k3_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k3_e1_se', 'ir_k5_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e3_se', 'ir_k5_e3_se', 'ir_k5_e3_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k5_e6_se',
|
||||
'ir_k5_e6_se',
|
||||
#'conv1', 'adaavgpool'
|
||||
],
|
||||
'strides': [
|
||||
#1,
|
||||
1,
|
||||
1, 1, 1, 1,
|
||||
1, 1, 1, 1,
|
||||
2, 1, 1, 1,
|
||||
1, 1, 1, 1,
|
||||
2, 1, 1, 1,
|
||||
1,
|
||||
#1, 1
|
||||
],
|
||||
'out_channels': [
|
||||
#32,
|
||||
16,
|
||||
24, 24, 24, 24,
|
||||
40, 40, 40, 40,
|
||||
80, 80, 80, 80,
|
||||
112, 112, 112, 112,
|
||||
192, 192, 192, 192,
|
||||
320,
|
||||
#1280, 1280,
|
||||
],
|
||||
'dropout_ratio': 0.2,
|
||||
'default_init': 'True',
|
||||
'se_ratio': '0.05'
|
||||
},
|
||||
}
|
|
@ -0,0 +1,200 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Data operations, will be used in train.py and eval.py"""
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import mindspore.dataset.vision.py_transforms as py_vision
|
||||
import mindspore.dataset.transforms.py_transforms as py_transforms
|
||||
import mindspore.dataset.transforms.c_transforms as c_transforms
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
from mindspore.communication.management import get_rank, get_group_size
|
||||
from mindspore.dataset.vision import Inter
|
||||
import mindspore.dataset.vision.c_transforms as vision
|
||||
|
||||
# values that should remain constant
|
||||
DEFAULT_CROP_PCT = 0.875
|
||||
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
||||
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
||||
|
||||
# data preprocess configs
|
||||
SCALE = (0.08, 1.0)
|
||||
RATIO = (3./4., 4./3.)
|
||||
|
||||
ds.config.set_seed(1)
|
||||
|
||||
|
||||
def split_imgs_and_labels(imgs, labels, batchInfo):
|
||||
"""split data into labels and images"""
|
||||
ret_imgs = []
|
||||
ret_labels = []
|
||||
|
||||
for i, image in enumerate(imgs):
|
||||
ret_imgs.append(image)
|
||||
ret_labels.append(labels[i])
|
||||
return np.array(ret_imgs), np.array(ret_labels)
|
||||
|
||||
|
||||
def create_dataset(batch_size, train_data_url='', workers=8, distributed=False,
|
||||
input_size=224, color_jitter=0.4):
|
||||
"""Create ImageNet training dataset"""
|
||||
if not os.path.exists(train_data_url):
|
||||
raise ValueError('Path not exists')
|
||||
decode_op = py_vision.Decode()
|
||||
type_cast_op = c_transforms.TypeCast(mstype.int32)
|
||||
|
||||
random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size),
|
||||
scale=SCALE, ratio=RATIO,
|
||||
interpolation=Inter.BICUBIC)
|
||||
random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5)
|
||||
adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter)
|
||||
random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range,
|
||||
contrast=adjust_range,
|
||||
saturation=adjust_range)
|
||||
to_tensor = py_vision.ToTensor()
|
||||
normalize_op = py_vision.Normalize(
|
||||
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
||||
|
||||
# assemble all the transforms
|
||||
image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic,
|
||||
random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op])
|
||||
|
||||
rank_id = get_rank() if distributed else 0
|
||||
rank_size = get_group_size() if distributed else 1
|
||||
|
||||
dataset_train = ds.ImageFolderDataset(train_data_url,
|
||||
num_parallel_workers=workers,
|
||||
shuffle=True,
|
||||
num_shards=rank_size,
|
||||
shard_id=rank_id)
|
||||
|
||||
dataset_train = dataset_train.map(input_columns=["image"],
|
||||
operations=image_ops,
|
||||
num_parallel_workers=workers)
|
||||
|
||||
dataset_train = dataset_train.map(input_columns=["label"],
|
||||
operations=type_cast_op,
|
||||
num_parallel_workers=workers)
|
||||
|
||||
# batch dealing
|
||||
ds_train = dataset_train.batch(batch_size,
|
||||
per_batch_map=split_imgs_and_labels,
|
||||
input_columns=["image", "label"],
|
||||
num_parallel_workers=2,
|
||||
drop_remainder=True)
|
||||
|
||||
ds_train = ds_train.repeat(1)
|
||||
return ds_train
|
||||
|
||||
|
||||
def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=False,
|
||||
input_size=224):
|
||||
"""Create ImageNet validation dataset"""
|
||||
if not os.path.exists(val_data_url):
|
||||
raise ValueError('Path not exists')
|
||||
rank_id = get_rank() if distributed else 0
|
||||
rank_size = get_group_size() if distributed else 1
|
||||
dataset = ds.ImageFolderDataset(val_data_url, num_parallel_workers=workers,
|
||||
num_shards=rank_size, shard_id=rank_id)
|
||||
scale_size = None
|
||||
|
||||
if isinstance(input_size, tuple):
|
||||
assert len(input_size) == 2
|
||||
if input_size[-1] == input_size[-2]:
|
||||
scale_size = int(math.floor(input_size[0] / DEFAULT_CROP_PCT))
|
||||
else:
|
||||
scale_size = tuple([int(x / DEFAULT_CROP_PCT) for x in input_size])
|
||||
else:
|
||||
scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT))
|
||||
|
||||
type_cast_op = c_transforms.TypeCast(mstype.int32)
|
||||
decode_op = py_vision.Decode()
|
||||
resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC)
|
||||
center_crop = py_vision.CenterCrop(size=input_size)
|
||||
to_tensor = py_vision.ToTensor()
|
||||
normalize_op = py_vision.Normalize(
|
||||
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
|
||||
|
||||
image_ops = py_transforms.Compose([decode_op, resize_op, center_crop,
|
||||
to_tensor, normalize_op])
|
||||
|
||||
dataset = dataset.map(input_columns=["label"], operations=type_cast_op,
|
||||
num_parallel_workers=workers)
|
||||
dataset = dataset.map(input_columns=["image"], operations=image_ops,
|
||||
num_parallel_workers=workers)
|
||||
dataset = dataset.batch(batch_size, per_batch_map=split_imgs_and_labels,
|
||||
input_columns=["image", "label"],
|
||||
num_parallel_workers=2,
|
||||
drop_remainder=True)
|
||||
dataset = dataset.repeat(1)
|
||||
return dataset
|
||||
|
||||
def _get_rank_info():
|
||||
"""
|
||||
get rank size and rank id
|
||||
"""
|
||||
rank_size = int(os.environ.get("RANK_SIZE", 1))
|
||||
|
||||
if rank_size > 1:
|
||||
rank_size = get_group_size()
|
||||
rank_id = get_rank()
|
||||
else:
|
||||
rank_size = rank_id = None
|
||||
|
||||
return rank_size, rank_id
|
||||
|
||||
def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=None):
|
||||
"""Data operations."""
|
||||
data_dir = os.path.join(data_home, "cifar-10-batches-bin")
|
||||
if not training:
|
||||
data_dir = os.path.join(data_home, "cifar-10-verify-bin")
|
||||
|
||||
rank_size, rank_id = _get_rank_info()
|
||||
if training:
|
||||
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=True)
|
||||
else:
|
||||
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=False)
|
||||
|
||||
resize_height = cifar_cfg.image_height
|
||||
resize_width = cifar_cfg.image_width
|
||||
|
||||
# define map operations
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_horizontal_op = vision.RandomHorizontalFlip()
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
rescale_op = vision.Rescale(1.0 / 255.0, 0.0)
|
||||
#normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
|
||||
normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.24703233, 0.24348505, 0.26158768))
|
||||
changeswap_op = vision.HWC2CHW()
|
||||
type_cast_op = c_transforms.TypeCast(mstype.int32)
|
||||
|
||||
c_trans = []
|
||||
if training:
|
||||
c_trans = [random_crop_op, random_horizontal_op]
|
||||
c_trans += [resize_op, rescale_op, normalize_op, changeswap_op]
|
||||
|
||||
# apply map operations on images
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label")
|
||||
data_set = data_set.map(operations=c_trans, input_columns="image")
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size=cifar_cfg.batch_size, drop_remainder=True)
|
||||
|
||||
# apply repeat operations
|
||||
data_set = data_set.repeat(repeat_num)
|
||||
|
||||
return data_set
|
|
@ -0,0 +1,766 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Tinynet model definition"""
|
||||
import math
|
||||
import re
|
||||
from copy import deepcopy
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import Normal, Zero, One, Uniform
|
||||
from mindspore import ms_function
|
||||
from mindspore import Tensor
|
||||
from src.architectures import predefine_archs
|
||||
|
||||
# Imagenet constant values
|
||||
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
||||
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
|
||||
|
||||
relu = P.ReLU()
|
||||
sigmoid = P.Sigmoid()
|
||||
|
||||
_DEBUG = False
|
||||
|
||||
# Default args for PyTorch BN impl
|
||||
_BN_MOMENTUM_PT_DEFAULT = 0.1
|
||||
_BN_EPS_PT_DEFAULT = 1e-5
|
||||
_BN_ARGS_PT = dict(momentum=_BN_MOMENTUM_PT_DEFAULT, eps=_BN_EPS_PT_DEFAULT)
|
||||
|
||||
# Defaults used for Google/Tensorflow training of mobile networks /w
|
||||
# RMSprop as per papers and TF reference implementations. PT momentum
|
||||
# equiv for TF decay is (1 - TF decay)
|
||||
# NOTE: momentum varies btw .99 and .9997 depending on source
|
||||
# .99 in official TF TPU impl
|
||||
# .9997 (/w .999 in search space) for paper
|
||||
_BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
|
||||
_BN_EPS_TF_DEFAULT = 1e-3
|
||||
_BN_ARGS_TF = dict(momentum=_BN_MOMENTUM_TF_DEFAULT, eps=_BN_EPS_TF_DEFAULT)
|
||||
|
||||
|
||||
def _initialize_weight_goog(shape=None, layer_type='conv', bias=False):
|
||||
"""Google style weight initialization"""
|
||||
if layer_type not in ('conv', 'bn', 'fc'):
|
||||
raise ValueError(
|
||||
'The layer type is not known, the supported are conv, bn and fc')
|
||||
if bias:
|
||||
return Zero()
|
||||
if layer_type == 'conv':
|
||||
assert isinstance(shape, (tuple, list)) and len(
|
||||
shape) == 3, 'The shape must be 3 scalars, and are in_chs, ks, out_chs respectively'
|
||||
n = shape[1] * shape[1] * shape[2]
|
||||
return Normal(math.sqrt(2.0 / n))
|
||||
if layer_type == 'bn':
|
||||
return One()
|
||||
|
||||
assert isinstance(shape, (tuple, list)) and len(
|
||||
shape) == 2, 'The shape must be 2 scalars, and are in_chs, out_chs respectively'
|
||||
n = shape[1]
|
||||
init_range = 1.0 / math.sqrt(n)
|
||||
return Uniform(init_range)
|
||||
|
||||
|
||||
def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0,
|
||||
pad_mode='same', bias=False):
|
||||
"""convolution wrapper"""
|
||||
weight_init_value = _initialize_weight_goog(
|
||||
shape=(in_channels, kernel_size, out_channels))
|
||||
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
|
||||
if bias:
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
has_bias=bias, bias_init=bias_init_value)
|
||||
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
has_bias=bias)
|
||||
|
||||
|
||||
def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same', bias=False):
|
||||
"""1x1 convolution wrapper"""
|
||||
weight_init_value = _initialize_weight_goog(
|
||||
shape=(in_channels, 1, out_channels))
|
||||
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
|
||||
if bias:
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
has_bias=bias, bias_init=bias_init_value)
|
||||
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
has_bias=bias)
|
||||
|
||||
|
||||
def _conv_group(in_channels, out_channels, group, kernel_size=3, stride=1, padding=0,
|
||||
pad_mode='same', bias=False):
|
||||
"""group convolution wrapper"""
|
||||
weight_init_value = _initialize_weight_goog(
|
||||
shape=(in_channels, kernel_size, out_channels))
|
||||
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
|
||||
if bias:
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
group=group, has_bias=bias, bias_init=bias_init_value)
|
||||
|
||||
return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_init_value,
|
||||
group=group, has_bias=bias)
|
||||
|
||||
|
||||
def _fused_bn(channels, momentum=0.1, eps=1e-4, gamma_init=1, beta_init=0):
|
||||
return nn.BatchNorm2d(channels, eps=eps, momentum=1-momentum, gamma_init=gamma_init,
|
||||
beta_init=beta_init)
|
||||
|
||||
|
||||
def _dense(in_channels, output_channels, bias=True, activation=None):
|
||||
weight_init_value = _initialize_weight_goog(shape=(in_channels, output_channels),
|
||||
layer_type='fc')
|
||||
bias_init_value = _initialize_weight_goog(bias=True) if bias else None
|
||||
if bias:
|
||||
return nn.Dense(in_channels, output_channels, weight_init=weight_init_value,
|
||||
bias_init=bias_init_value, has_bias=bias, activation=activation)
|
||||
|
||||
return nn.Dense(in_channels, output_channels, weight_init=weight_init_value,
|
||||
has_bias=bias, activation=activation)
|
||||
|
||||
|
||||
def _resolve_bn_args(kwargs):
|
||||
bn_args = _BN_ARGS_TF.copy() if kwargs.pop(
|
||||
'bn_tf', False) else _BN_ARGS_PT.copy()
|
||||
bn_momentum = kwargs.pop('bn_momentum', None)
|
||||
if bn_momentum is not None:
|
||||
bn_args['momentum'] = bn_momentum
|
||||
bn_eps = kwargs.pop('bn_eps', None)
|
||||
if bn_eps is not None:
|
||||
bn_args['eps'] = bn_eps
|
||||
return bn_args
|
||||
|
||||
|
||||
def _round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
|
||||
"""Round number of filters based on depth multiplier."""
|
||||
if not multiplier:
|
||||
return channels
|
||||
channels *= multiplier
|
||||
channel_min = channel_min or divisor
|
||||
new_channels = max(
|
||||
int(channels + divisor / 2) // divisor * divisor,
|
||||
channel_min)
|
||||
# Make sure that round down does not go down by more than 10%.
|
||||
if new_channels < 0.9 * channels:
|
||||
new_channels += divisor
|
||||
return new_channels
|
||||
|
||||
|
||||
def _parse_ksize(ss):
|
||||
if ss.isdigit():
|
||||
return int(ss)
|
||||
return [int(k) for k in ss.split('.')]
|
||||
|
||||
|
||||
def _decode_block_str(block_str, depth_multiplier=1.0):
|
||||
""" Decode block definition string
|
||||
|
||||
Gets a list of block arg (dicts) through a string notation of arguments.
|
||||
E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip
|
||||
|
||||
All args can exist in any order with the exception of the leading string which
|
||||
is assumed to indicate the block type.
|
||||
|
||||
leading string - block type (
|
||||
ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
|
||||
r - number of repeat blocks,
|
||||
k - kernel size,
|
||||
s - strides (1-9),
|
||||
e - expansion ratio,
|
||||
c - output channels,
|
||||
se - squeeze/excitation ratio
|
||||
n - activation fn ('re', 'r6', 'hs', or 'sw')
|
||||
Args:
|
||||
block_str: a string representation of block arguments.
|
||||
Returns:
|
||||
A list of block args (dicts)
|
||||
Raises:
|
||||
ValueError: if the string def not properly specified (TODO)
|
||||
"""
|
||||
assert isinstance(block_str, str)
|
||||
ops = block_str.split('_')
|
||||
block_type = ops[0] # take the block type off the front
|
||||
ops = ops[1:]
|
||||
options = {}
|
||||
noskip = False
|
||||
for op in ops:
|
||||
if op == 'noskip':
|
||||
noskip = True
|
||||
elif op.startswith('n'):
|
||||
# activation fn
|
||||
key = op[0]
|
||||
v = op[1:]
|
||||
if v in ('re', 'r6', 'hs', 'sw'):
|
||||
print('not support')
|
||||
else:
|
||||
continue
|
||||
options[key] = value
|
||||
else:
|
||||
# all numeric options
|
||||
splits = re.split(r'(\d.*)', op)
|
||||
if len(splits) >= 2:
|
||||
key, value = splits[:2]
|
||||
options[key] = value
|
||||
|
||||
act_fn = options['n'] if 'n' in options else None
|
||||
exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
|
||||
pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
|
||||
fake_in_chs = int(options['fc']) if 'fc' in options else 0
|
||||
|
||||
num_repeat = int(options['r'])
|
||||
# each type of block has different valid arguments, fill accordingly
|
||||
if block_type == 'ir':
|
||||
block_args = dict(
|
||||
block_type=block_type,
|
||||
dw_kernel_size=_parse_ksize(options['k']),
|
||||
exp_kernel_size=exp_kernel_size,
|
||||
pw_kernel_size=pw_kernel_size,
|
||||
out_chs=int(options['c']),
|
||||
exp_ratio=float(options['e']),
|
||||
se_ratio=float(options['se']) if 'se' in options else None,
|
||||
stride=int(options['s']),
|
||||
act_fn=act_fn,
|
||||
noskip=noskip,
|
||||
)
|
||||
elif block_type in ('ds', 'dsa'):
|
||||
block_args = dict(
|
||||
block_type=block_type,
|
||||
dw_kernel_size=_parse_ksize(options['k']),
|
||||
pw_kernel_size=pw_kernel_size,
|
||||
out_chs=int(options['c']),
|
||||
se_ratio=float(options['se']) if 'se' in options else None,
|
||||
stride=int(options['s']),
|
||||
act_fn=act_fn,
|
||||
pw_act=block_type == 'dsa',
|
||||
noskip=block_type == 'dsa' or noskip,
|
||||
)
|
||||
elif block_type == 'er':
|
||||
block_args = dict(
|
||||
block_type=block_type,
|
||||
exp_kernel_size=_parse_ksize(options['k']),
|
||||
pw_kernel_size=pw_kernel_size,
|
||||
out_chs=int(options['c']),
|
||||
exp_ratio=float(options['e']),
|
||||
fake_in_chs=fake_in_chs,
|
||||
se_ratio=float(options['se']) if 'se' in options else None,
|
||||
stride=int(options['s']),
|
||||
act_fn=act_fn,
|
||||
noskip=noskip,
|
||||
)
|
||||
elif block_type == 'cn':
|
||||
block_args = dict(
|
||||
block_type=block_type,
|
||||
kernel_size=int(options['k']),
|
||||
out_chs=int(options['c']),
|
||||
stride=int(options['s']),
|
||||
act_fn=act_fn,
|
||||
)
|
||||
else:
|
||||
assert False, 'Unknown block type (%s)' % block_type
|
||||
|
||||
return block_args, num_repeat
|
||||
|
||||
|
||||
def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
|
||||
""" Per-stage depth scaling
|
||||
Scales the block repeats in each stage. This depth scaling impl maintains
|
||||
compatibility with the EfficientNet scaling method, while allowing sensible
|
||||
scaling for other models that may have multiple block arg definitions in each stage.
|
||||
"""
|
||||
|
||||
# We scale the total repeat count for each stage, there may be multiple
|
||||
# block arg defs per stage so we need to sum.
|
||||
num_repeat = sum(repeats)
|
||||
if depth_trunc == 'round':
|
||||
# Truncating to int by rounding allows stages with few repeats to remain
|
||||
# proportionally smaller for longer. This is a good choice when stage definitions
|
||||
# include single repeat stages that we'd prefer to keep that way as long as possible
|
||||
num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
|
||||
else:
|
||||
# The default for EfficientNet truncates repeats to int via 'ceil'.
|
||||
# Any multiplier > 1.0 will result in an increased depth for every stage.
|
||||
num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
|
||||
# Proportionally distribute repeat count scaling to each block definition in the stage.
|
||||
# Allocation is done in reverse as it results in the first block being less likely to be scaled.
|
||||
# The first block makes less sense to repeat in most of the arch definitions.
|
||||
repeats_scaled = []
|
||||
for r in repeats[::-1]:
|
||||
rs = max(1, round((r / num_repeat * num_repeat_scaled)))
|
||||
repeats_scaled.append(rs)
|
||||
num_repeat -= r
|
||||
num_repeat_scaled -= rs
|
||||
repeats_scaled = repeats_scaled[::-1]
|
||||
# Apply the calculated scaling to each block arg in the stage
|
||||
sa_scaled = []
|
||||
for ba, rep in zip(stack_args, repeats_scaled):
|
||||
sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
|
||||
return sa_scaled
|
||||
|
||||
|
||||
def _decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil'):
|
||||
"""further decode the architecture definition into model-ready format"""
|
||||
arch_args = []
|
||||
for _, block_strings in enumerate(arch_def):
|
||||
assert isinstance(block_strings, list)
|
||||
stack_args = []
|
||||
repeats = []
|
||||
for block_str in block_strings:
|
||||
assert isinstance(block_str, str)
|
||||
ba, rep = _decode_block_str(block_str)
|
||||
stack_args.append(ba)
|
||||
repeats.append(rep)
|
||||
arch_args.append(_scale_stage_depth(
|
||||
stack_args, repeats, depth_multiplier, depth_trunc))
|
||||
return arch_args
|
||||
|
||||
|
||||
class Swish(nn.Cell):
|
||||
"""swish activation function"""
|
||||
|
||||
def __init__(self):
|
||||
super(Swish, self).__init__()
|
||||
self.sigmoid = P.Sigmoid()
|
||||
|
||||
def construct(self, x):
|
||||
return x * self.sigmoid(x)
|
||||
|
||||
|
||||
@ms_function
|
||||
def swish(x):
|
||||
return x * nn.Sigmoid()(x)
|
||||
|
||||
|
||||
class BlockBuilder(nn.Cell):
|
||||
"""build efficient-net convolution blocks"""
|
||||
|
||||
def __init__(self, builder_in_channels, builder_block_args, channel_multiplier=1.0,
|
||||
channel_divisor=8, channel_min=None, pad_type='', act_fn=relu,
|
||||
se_gate_fn=sigmoid, se_reduce_mid=False, bn_args=None,
|
||||
drop_connect_rate=0., verbose=False):
|
||||
super(BlockBuilder, self).__init__()
|
||||
|
||||
self.channel_multiplier = channel_multiplier
|
||||
self.channel_divisor = channel_divisor
|
||||
self.channel_min = channel_min
|
||||
self.pad_type = pad_type
|
||||
self.act_fn = act_fn #Swish()
|
||||
self.se_gate_fn = se_gate_fn
|
||||
self.se_reduce_mid = se_reduce_mid
|
||||
self.bn_args = bn_args
|
||||
self.drop_connect_rate = drop_connect_rate
|
||||
self.verbose = verbose
|
||||
|
||||
# updated during build
|
||||
self.in_chs = None
|
||||
self.block_idx = 0
|
||||
self.block_count = 0
|
||||
self.layer = self._make_layer(builder_in_channels, builder_block_args)
|
||||
|
||||
def _round_channels(self, chs):
|
||||
return _round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
|
||||
|
||||
def _make_block(self, ba):
|
||||
"""make the current block based on the block argument"""
|
||||
bt = ba.pop('block_type')
|
||||
ba['in_chs'] = self.in_chs
|
||||
ba['out_chs'] = self._round_channels(ba['out_chs'])
|
||||
if 'fake_in_chs' in ba and ba['fake_in_chs']:
|
||||
# this is a hack to work around mismatch in origin impl input filters
|
||||
ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
|
||||
ba['bn_args'] = self.bn_args
|
||||
ba['pad_type'] = self.pad_type
|
||||
# block act fn overrides the model default
|
||||
ba['act_fn'] = ba['act_fn'] if ba['act_fn'] is not None else self.act_fn
|
||||
assert ba['act_fn'] is not None
|
||||
if bt == 'ir':
|
||||
ba['drop_connect_rate'] = self.drop_connect_rate * \
|
||||
self.block_idx / self.block_count
|
||||
ba['se_gate_fn'] = self.se_gate_fn
|
||||
ba['se_reduce_mid'] = self.se_reduce_mid
|
||||
block = InvertedResidual(**ba)
|
||||
elif bt in ('ds', 'dsa'):
|
||||
ba['drop_connect_rate'] = self.drop_connect_rate * \
|
||||
self.block_idx / self.block_count
|
||||
block = DepthwiseSeparableConv(**ba)
|
||||
else:
|
||||
assert False, 'Uknkown block type (%s) while building model.' % bt
|
||||
self.in_chs = ba['out_chs']
|
||||
|
||||
return block
|
||||
|
||||
def _make_stack(self, stack_args):
|
||||
"""make a stack of blocks"""
|
||||
blocks = []
|
||||
# each stack (stage) contains a list of block arguments
|
||||
for i, ba in enumerate(stack_args):
|
||||
if i >= 1:
|
||||
# only the first block in any stack can have a stride > 1
|
||||
ba['stride'] = 1
|
||||
block = self._make_block(ba)
|
||||
blocks.append(block)
|
||||
self.block_idx += 1 # incr global idx (across all stacks)
|
||||
return nn.SequentialCell(blocks)
|
||||
|
||||
def _make_layer(self, in_chs, block_args):
|
||||
""" Build the entire layer
|
||||
Args:
|
||||
in_chs: Number of input-channels passed to first block
|
||||
block_args: A list of lists, outer list defines stages, inner
|
||||
list contains strings defining block configuration(s)
|
||||
Return:
|
||||
List of block stacks (each stack wrapped in nn.Sequential)
|
||||
"""
|
||||
self.in_chs = in_chs
|
||||
self.block_count = sum([len(x) for x in block_args])
|
||||
self.block_idx = 0
|
||||
blocks = []
|
||||
# outer list of block_args defines the stacks ('stages' by some conventions)
|
||||
for _, stack in enumerate(block_args):
|
||||
assert isinstance(stack, list)
|
||||
stack = self._make_stack(stack)
|
||||
blocks.append(stack)
|
||||
return nn.SequentialCell(blocks)
|
||||
|
||||
def construct(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
|
||||
class DropConnect(nn.Cell):
|
||||
"""drop connect implementation"""
|
||||
|
||||
def __init__(self, drop_connect_rate=0., seed0=0, seed1=0):
|
||||
super(DropConnect, self).__init__()
|
||||
self.shape = P.Shape()
|
||||
self.dtype = P.DType()
|
||||
self.keep_prob = 1 - drop_connect_rate
|
||||
self.dropout = P.Dropout(keep_prob=self.keep_prob)
|
||||
self.keep_prob_tensor = Tensor(self.keep_prob, dtype=mstype.float32)
|
||||
|
||||
def construct(self, x):
|
||||
shape = self.shape(x)
|
||||
dtype = self.dtype(x)
|
||||
ones_tensor = P.Fill()(dtype, (shape[0], 1, 1, 1), 1)
|
||||
_, mask = self.dropout(ones_tensor)
|
||||
x = x * mask
|
||||
x = x / self.keep_prob_tensor
|
||||
return x
|
||||
|
||||
|
||||
def drop_connect(inputs, training=False, drop_connect_rate=0.):
|
||||
if not training:
|
||||
return inputs
|
||||
return DropConnect(drop_connect_rate)(inputs)
|
||||
|
||||
|
||||
class SqueezeExcite(nn.Cell):
|
||||
"""squeeze-excite implementation"""
|
||||
|
||||
def __init__(self, in_chs, reduce_chs=None, act_fn=relu, gate_fn=sigmoid):
|
||||
super(SqueezeExcite, self).__init__()
|
||||
self.act_fn = act_fn #Swish()
|
||||
self.gate_fn = gate_fn
|
||||
reduce_chs = reduce_chs or in_chs
|
||||
self.conv_reduce = nn.Conv2d(in_channels=in_chs, out_channels=reduce_chs,
|
||||
kernel_size=1, has_bias=False, pad_mode='pad')
|
||||
self.conv_expand = nn.Conv2d(in_channels=reduce_chs, out_channels=in_chs,
|
||||
kernel_size=1, has_bias=False, pad_mode='pad')
|
||||
self.avg_global_pool = P.ReduceMean(keep_dims=True)
|
||||
|
||||
def construct(self, x):
|
||||
x_se = self.avg_global_pool(x, (2, 3))
|
||||
x_se = self.conv_reduce(x_se)
|
||||
x_se = self.act_fn(x_se)
|
||||
x_se = self.conv_expand(x_se)
|
||||
x_se = self.gate_fn(x_se)
|
||||
x = x * x_se
|
||||
return x
|
||||
|
||||
|
||||
class DepthwiseSeparableConv(nn.Cell):
|
||||
"""depth-wise convolution -> (squeeze-excite) -> point-wise convolution"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
|
||||
stride=1, pad_type='', act_fn=relu, noskip=False,
|
||||
pw_kernel_size=1, pw_act=False, se_ratio=0., se_gate_fn=sigmoid,
|
||||
bn_args=None, drop_connect_rate=0.):
|
||||
super(DepthwiseSeparableConv, self).__init__()
|
||||
assert stride in [1, 2], 'stride must be 1 or 2'
|
||||
self.has_se = se_ratio is not None and se_ratio > 0.
|
||||
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
|
||||
self.has_pw_act = pw_act
|
||||
self.act_fn = act_fn #Swish()
|
||||
self.drop_connect_rate = drop_connect_rate
|
||||
self.conv_dw = nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride, pad_mode="pad",
|
||||
padding=int(dw_kernel_size/2), has_bias=False, group=in_chs,
|
||||
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, in_chs]))
|
||||
self.bn1 = _fused_bn(in_chs, **bn_args)
|
||||
|
||||
if self.has_se:
|
||||
self.se = SqueezeExcite(in_chs, reduce_chs=max(1, int(in_chs * se_ratio)),
|
||||
act_fn=act_fn, gate_fn=se_gate_fn)
|
||||
self.conv_pw = _conv1x1(in_chs, out_chs)
|
||||
self.bn2 = _fused_bn(out_chs, **bn_args)
|
||||
|
||||
def construct(self, x):
|
||||
"""forward the depthwise separable conv"""
|
||||
identity = x
|
||||
|
||||
x = self.conv_dw(x)
|
||||
x = self.bn1(x)
|
||||
x = self.act_fn(x)
|
||||
|
||||
if self.has_se:
|
||||
x = self.se(x)
|
||||
|
||||
x = self.conv_pw(x)
|
||||
x = self.bn2(x)
|
||||
|
||||
if self.has_pw_act:
|
||||
x = self.act_fn(x)
|
||||
|
||||
if self.has_residual:
|
||||
if self.drop_connect_rate > 0.:
|
||||
x = drop_connect(x, self.training, self.drop_connect_rate)
|
||||
x = x + identity
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class InvertedResidual(nn.Cell):
|
||||
"""inverted-residual block implementation"""
|
||||
|
||||
def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1,
|
||||
pad_type='', act_fn=relu, pw_kernel_size=1,
|
||||
noskip=False, exp_ratio=1., exp_kernel_size=1, se_ratio=0.,
|
||||
se_reduce_mid=False, se_gate_fn=sigmoid, shuffle_type=None,
|
||||
bn_args=None, drop_connect_rate=0.):
|
||||
super(InvertedResidual, self).__init__()
|
||||
mid_chs = int(in_chs * exp_ratio)
|
||||
self.has_se = se_ratio is not None and se_ratio > 0.
|
||||
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
|
||||
self.act_fn = act_fn #Swish()
|
||||
self.drop_connect_rate = drop_connect_rate
|
||||
|
||||
self.conv_pw = _conv(in_chs, mid_chs, exp_kernel_size)
|
||||
self.bn1 = _fused_bn(mid_chs, **bn_args)
|
||||
|
||||
self.shuffle_type = shuffle_type
|
||||
if self.shuffle_type is not None and isinstance(exp_kernel_size, list):
|
||||
self.shuffle = None
|
||||
|
||||
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride, pad_mode="pad",
|
||||
padding=int(dw_kernel_size/2), has_bias=False, group=mid_chs,
|
||||
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, mid_chs]))
|
||||
self.bn2 = _fused_bn(mid_chs, **bn_args)
|
||||
|
||||
if self.has_se:
|
||||
se_base_chs = mid_chs if se_reduce_mid else in_chs
|
||||
#print(se_base_chs)
|
||||
self.se = SqueezeExcite(
|
||||
mid_chs, reduce_chs=max(1, int(se_base_chs * se_ratio)),
|
||||
act_fn=act_fn, gate_fn=se_gate_fn
|
||||
)
|
||||
|
||||
self.conv_pwl = _conv(mid_chs, out_chs, pw_kernel_size)
|
||||
self.bn3 = _fused_bn(out_chs, **bn_args)
|
||||
|
||||
def construct(self, x):
|
||||
"""forward the inverted-residual block"""
|
||||
identity = x
|
||||
|
||||
x = self.conv_pw(x)
|
||||
x = self.bn1(x)
|
||||
x = self.act_fn(x)
|
||||
|
||||
x = self.conv_dw(x)
|
||||
x = self.bn2(x)
|
||||
x = self.act_fn(x)
|
||||
|
||||
if self.has_se:
|
||||
x = self.se(x)
|
||||
|
||||
x = self.conv_pwl(x)
|
||||
x = self.bn3(x)
|
||||
|
||||
if self.has_residual:
|
||||
if self.drop_connect_rate > 0:
|
||||
x = drop_connect(x, self.training, self.drop_connect_rate)
|
||||
x = x + identity
|
||||
return x
|
||||
|
||||
|
||||
class GenEfficientNet(nn.Cell):
|
||||
"""Generate EfficientNet architecture"""
|
||||
|
||||
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=32, num_features=1280,
|
||||
channel_multiplier=1.0, channel_divisor=8, channel_min=None,
|
||||
pad_type='', act_fn=relu, drop_rate=0., drop_connect_rate=0.,
|
||||
se_gate_fn=sigmoid, se_reduce_mid=False, bn_args=None,
|
||||
global_pool='avg', head_conv='default', weight_init='goog'):
|
||||
|
||||
super(GenEfficientNet, self).__init__()
|
||||
bn_args = _BN_ARGS_PT if bn_args is None else bn_args
|
||||
self.num_classes = num_classes
|
||||
self.drop_rate = drop_rate
|
||||
self.num_features = num_features
|
||||
|
||||
self.conv_stem = _conv(in_chans, stem_size, 3,
|
||||
stride=1, padding=1, pad_mode='pad')
|
||||
self.bn1 = _fused_bn(stem_size, **bn_args)
|
||||
self.act_fn = relu #Swish()
|
||||
in_chans = stem_size
|
||||
self.blocks = BlockBuilder(in_chans, block_args, channel_multiplier,
|
||||
channel_divisor, channel_min,
|
||||
pad_type, act_fn, se_gate_fn, se_reduce_mid,
|
||||
bn_args, drop_connect_rate, verbose=_DEBUG)
|
||||
in_chs = self.blocks.in_chs
|
||||
|
||||
if not head_conv or head_conv == 'none':
|
||||
self.efficient_head = False
|
||||
self.conv_head = None
|
||||
assert in_chs == self.num_features
|
||||
else:
|
||||
self.efficient_head = head_conv == 'efficient'
|
||||
self.conv_head = _conv1x1(in_chs, self.num_features)
|
||||
self.bn2 = None if self.efficient_head else _fused_bn(
|
||||
self.num_features, **bn_args)
|
||||
|
||||
self.global_pool = P.ReduceMean(keep_dims=True)
|
||||
self.classifier = _dense(self.num_features, self.num_classes)
|
||||
self.reshape = P.Reshape()
|
||||
self.shape = P.Shape()
|
||||
self.drop_out = nn.Dropout(keep_prob=1-self.drop_rate)
|
||||
|
||||
def construct(self, x):
|
||||
"""efficient net entry point"""
|
||||
x = self.conv_stem(x)
|
||||
#aux = x
|
||||
x = self.bn1(x)
|
||||
x = self.act_fn(x)
|
||||
x = self.blocks(x)
|
||||
if self.efficient_head:
|
||||
x = self.global_pool(x, (2, 3))
|
||||
x = self.conv_head(x)
|
||||
x = self.act_fn(x)
|
||||
x = self.reshape(self.shape(x)[0], -1)
|
||||
else:
|
||||
if self.conv_head is not None:
|
||||
x = self.conv_head(x)
|
||||
x = self.bn2(x)
|
||||
x = self.act_fn(x)
|
||||
x = self.global_pool(x, (2, 3))
|
||||
x = self.reshape(x, (self.shape(x)[0], -1))
|
||||
|
||||
if self.training and self.drop_rate > 0.:
|
||||
x = self.drop_out(x)
|
||||
#print('forward')
|
||||
#aux = x
|
||||
return self.classifier(x) #, aux
|
||||
|
||||
def _convert_arch_def(genotypes, strides, out_channels, se_ratio):
|
||||
"""Convert HourNAS architecture to EfficientNet arch_def.
|
||||
|
||||
HourNAS style:
|
||||
'genotypes' : [
|
||||
#'conv3bnrelu',
|
||||
'ir_k3_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k5_e1_se', 'ir_k3_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k3_e1_se', 'ir_k5_e1_se',
|
||||
'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e3_se', 'ir_k5_e3_se', 'ir_k5_e3_se',
|
||||
'ir_k5_e6_se', 'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k5_e6_se',
|
||||
'ir_k5_e6_se',
|
||||
#'conv1', 'adaavgpool'
|
||||
],
|
||||
|
||||
EfficientNet style:
|
||||
arch_def = [
|
||||
['ds_r1_k3_s1_e1_c16_se0.25'],
|
||||
['ir_r2_k3_s2_e6_c24_se0.25'],
|
||||
['ir_r2_k5_s2_e6_c40_se0.25'],
|
||||
['ir_r3_k3_s2_e6_c80_se0.25'],
|
||||
['ir_r3_k5_s1_e6_c112_se0.25'],
|
||||
['ir_r4_k5_s2_e6_c192_se0.25'],
|
||||
['ir_r1_k3_s1_e6_c320_se0.25'],
|
||||
]
|
||||
"""
|
||||
arch_def = []
|
||||
for genotype, stride, out_channel in zip(genotypes, strides, out_channels):
|
||||
arch_str = genotype.replace('se', 'se'+se_ratio)
|
||||
arch_str = arch_str + '_r1'
|
||||
arch_str = arch_str + '_c{}'.format(out_channel)
|
||||
arch_str = arch_str + '_s{}'.format(stride)
|
||||
arch_def.append([arch_str])
|
||||
return arch_def
|
||||
|
||||
def _gen_efficientnet(genotypes, strides, out_channels, se_ratio, num_classes=1000, **kwargs):
|
||||
"""Creates an EfficientNet model.
|
||||
|
||||
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
|
||||
Paper: https://arxiv.org/abs/1905.11946
|
||||
|
||||
EfficientNet params
|
||||
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate)
|
||||
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
|
||||
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
|
||||
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
|
||||
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
|
||||
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
|
||||
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
|
||||
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
|
||||
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
|
||||
|
||||
Args:
|
||||
channel_multiplier (int): multiplier to number of channels per layer
|
||||
depth_multiplier (int): multiplier to number of repeats per stage
|
||||
|
||||
"""
|
||||
arch_def = _convert_arch_def(genotypes, strides, out_channels, se_ratio)
|
||||
print(arch_def)
|
||||
channel_multiplier = 1.0
|
||||
depth_multiplier = 1.0
|
||||
num_features = max(1280, _round_channels(
|
||||
1280, channel_multiplier, 8, None))
|
||||
model = GenEfficientNet(
|
||||
_decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'),
|
||||
num_classes=num_classes,
|
||||
stem_size=32,
|
||||
channel_multiplier=channel_multiplier,
|
||||
num_features=num_features,
|
||||
bn_args=_resolve_bn_args(kwargs),
|
||||
act_fn=relu,
|
||||
se_reduce_mid=True,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def hournasnet(arch="hournas_f_c10", num_classes=10, in_chans=3, **kwargs):
|
||||
""" HourNAS Models """
|
||||
# choose a sub model
|
||||
genotypes = predefine_archs[arch]['genotypes']
|
||||
strides = predefine_archs[arch]['strides']
|
||||
out_channels = predefine_archs[arch]['out_channels']
|
||||
se_ratio = predefine_archs[arch]['se_ratio']
|
||||
|
||||
model = _gen_efficientnet(
|
||||
genotypes=genotypes, strides=strides, out_channels=out_channels, se_ratio=se_ratio,
|
||||
num_classes=num_classes, in_chans=in_chans, **kwargs)
|
||||
|
||||
return model
|
|
@ -0,0 +1,89 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""model utils"""
|
||||
import math
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def str2bool(value):
|
||||
"""Convert string arguments to bool type"""
|
||||
if value.lower() in ('yes', 'true', 't', 'y', '1'):
|
||||
return True
|
||||
if value.lower() in ('no', 'false', 'f', 'n', '0'):
|
||||
return False
|
||||
raise argparse.ArgumentTypeError('Boolean value expected.')
|
||||
|
||||
|
||||
def get_lr(base_lr, total_epochs, steps_per_epoch, decay_epochs=1, decay_rate=0.9,
|
||||
warmup_epochs=0., warmup_lr_init=0., global_epoch=0):
|
||||
"""Get scheduled learning rate"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
global_steps = steps_per_epoch * global_epoch
|
||||
self_warmup_delta = ((base_lr - warmup_lr_init) / \
|
||||
warmup_epochs) if warmup_epochs > 0 else 0
|
||||
self_decay_rate = decay_rate if decay_rate < 1 else 1/decay_rate
|
||||
for i in range(total_steps):
|
||||
epochs = math.floor(i/steps_per_epoch)
|
||||
cond = 1 if (epochs < warmup_epochs) else 0
|
||||
warmup_lr = warmup_lr_init + epochs * self_warmup_delta
|
||||
decay_nums = math.floor(epochs / decay_epochs)
|
||||
decay_rate = math.pow(self_decay_rate, decay_nums)
|
||||
decay_lr = base_lr * decay_rate
|
||||
lr = cond * warmup_lr + (1 - cond) * decay_lr
|
||||
lr_each_step.append(lr)
|
||||
lr_each_step = lr_each_step[global_steps:]
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
return lr_each_step
|
||||
|
||||
|
||||
def add_weight_decay(net, weight_decay=1e-5, skip_list=None):
|
||||
"""Apply weight decay to only conv and dense layers (len(shape) > =2)
|
||||
Args:
|
||||
net (mindspore.nn.Cell): Mindspore network instance
|
||||
weight_decay (float): weight decay tobe used.
|
||||
skip_list (tuple): list of parameter names without weight decay
|
||||
Returns:
|
||||
A list of group of parameters, separated by different weight decay.
|
||||
"""
|
||||
decay = []
|
||||
no_decay = []
|
||||
if not skip_list:
|
||||
skip_list = ()
|
||||
for param in net.trainable_params():
|
||||
if len(param.shape) == 1 or \
|
||||
param.name.endswith(".bias") or \
|
||||
param.name in skip_list:
|
||||
no_decay.append(param)
|
||||
else:
|
||||
decay.append(param)
|
||||
return [
|
||||
{'params': no_decay, 'weight_decay': 0.},
|
||||
{'params': decay, 'weight_decay': weight_decay}]
|
||||
|
||||
|
||||
def count_params(net):
|
||||
"""Count number of parameters in the network
|
||||
Args:
|
||||
net (mindspore.nn.Cell): Mindspore network instance
|
||||
Returns:
|
||||
total_params (int): Total number of trainable params
|
||||
"""
|
||||
total_params = 0
|
||||
for param in net.trainable_params():
|
||||
total_params += np.prod(param.shape)
|
||||
return total_params
|
Loading…
Reference in New Issue