forked from mindspore-Ecosystem/mindspore
!48829 fix api doc
Merge pull request !48829 from 于振华/code_docs_api_doc_230213
This commit is contained in:
commit
86e725da91
|
@ -3,15 +3,18 @@ mindspore.ops.bincount
|
|||
|
||||
.. py:function:: mindspore.ops.bincount(x, weights=None, minlength=0)
|
||||
|
||||
计算非负整数数组中每个值的出现次数。(大小为1的)bins的数量为 `x` 中的最大值加1。
|
||||
如果指定了 `minlength`,则输出数组中至少会有此数量的bins(如果需要,它会更长,具体取决于 `x` 的内容)。
|
||||
每个bin给出其索引值在 `x` 中的出现次数。如果指定了 `weights`,则输入数组由其加权,即如果在位置 `i` 处的值 `n`,则 `out[n]+=weight[i]` 而不是 `out[n]+=1`。
|
||||
统计 `x` 中每个值的出现次数。
|
||||
|
||||
如果不指定 `minlength` ,输出Tensor的长度为输入 `x` 中最大值加1。
|
||||
如果指定了 `minlength`,则输出Tensor的长度为 `x` 中最大值加1和 `minlength` 的最大值。
|
||||
|
||||
输出Tensor中每个值标记了该索引值在 `x` 中的出现次数。如果指定了 `weights`,对输出的结果进行加权处理,即 `out[n]+=weight[i]` 而不是 `out[n]+=1`。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 一维的Tensor。
|
||||
- **weights** (Tensor, 可选) - 权重,与 `x` shape相同的tensor。默认值:None。
|
||||
- **minlength** (int, 可选) - 输出Tensor的最小bin的数量。默认值:0。
|
||||
|
||||
- **weights** (Tensor, 可选) - 权重,与 `x` shape相同。默认值:None。
|
||||
- **minlength** (int, 可选) - 输出Tensor的最小长度。默认值:0。
|
||||
|
||||
返回:
|
||||
Tensor,如果输入为非空,输出shape为[max(input)+1]的Tensor,否则shape为[0]。
|
||||
|
||||
|
|
|
@ -3,15 +3,15 @@ mindspore.ops.chunk
|
|||
|
||||
.. py:function:: mindspore.ops.chunk(x, chunks, axis=0)
|
||||
|
||||
根据指定的轴将输入Tensor切分成块。
|
||||
沿着指定轴 `axis` 将输入Tensor切分成 `chunks` 个sub-tensor。
|
||||
|
||||
.. note::
|
||||
此函数返回的数量可能小于通过 `chunks` 指定的数量!
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - Tensor的shape为 :math:`(x_1, x_2, ..., x_R)` 。
|
||||
- **chunks** (int) - 要返回的块数。
|
||||
- **axis** (int) - 指定分割轴。默认值:0。
|
||||
- **x** (Tensor) - 被切分的Tensor。
|
||||
- **chunks** (int) - 要切分的sub-tensor数量。
|
||||
- **axis** (int) - 指定需要分割的维度。默认值:0。
|
||||
|
||||
返回:
|
||||
tuple[Tensor]。
|
||||
|
|
|
@ -3,10 +3,10 @@ mindspore.ops.full_like
|
|||
|
||||
.. py:function:: mindspore.ops.full_like(x, fill_value, *, dtype=None)
|
||||
|
||||
返回一个与输入相同大小的Tensor,填充 `fill_value` 。 `ops.full_like(x, fill_value)` 相当于 `ops.full(x.shape, fill_value, dtype=x.dtype)` 。
|
||||
返回一个shape与 `x` 相同并且使用 `fill_value` 填充的Tensor。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - `x` 的shape决定输出Tensor的shape。
|
||||
- **x** (Tensor) - 输入Tensor,输出Tensor与 `x` 具有相同的shape。
|
||||
- **fill_value** (number.Number) - 用来填充输出Tensor的值。当前不支持复数类型。
|
||||
|
||||
关键字参数:
|
||||
|
|
|
@ -3,8 +3,7 @@ mindspore.ops.tril
|
|||
|
||||
.. py:function:: mindspore.ops.tril(input_x, diagonal=0)
|
||||
|
||||
返回单个矩阵(二维Tensor)或批次输入矩阵的下三角形部分,其他位置的元素将被置零。
|
||||
矩阵的下三角形部分定义为对角线本身和对角线以下的元素。
|
||||
返回输入Tensor `input_x` 的下三角形部分(包含对角线和下面的元素),并将其他元素设置为0。
|
||||
|
||||
参数:
|
||||
- **input_x** (Tensor) - 输入Tensor。shape为 :math:`(x_1, x_2, ..., x_R)` ,其rank至少为2。
|
||||
|
|
|
@ -717,11 +717,10 @@ def full(size, fill_value, *, dtype=None): # pylint: disable=redefined-outer-nam
|
|||
|
||||
def full_like(x, fill_value, *, dtype=None):
|
||||
"""
|
||||
Returns a Tensor with the same size as `x` filled with `fill_value`. `ops.full_like(x, fill_value)` is
|
||||
equivalent to `ops.full(x.shape, fill_value, dtype=x.dtype)` .
|
||||
Return a Tensor of the same shape as `x` and filled with `fill_value`.
|
||||
|
||||
Args:
|
||||
x (Tensor): The shape of `x` will determine shape of the output Tensor.
|
||||
x (Tensor): input Tensor and the output Tensor have the same shape as `x`.
|
||||
fill_value (number.Number): Value to fill the returned Tensor. Complex numbers are not supported for now.
|
||||
|
||||
Keyword Args:
|
||||
|
@ -757,15 +756,15 @@ def full_like(x, fill_value, *, dtype=None):
|
|||
|
||||
def chunk(x, chunks, axis=0):
|
||||
"""
|
||||
Splits the Tensor into chunks along the given axis.
|
||||
Cut the input Tensor into `chunks` sub-tensors along the specified axis.
|
||||
|
||||
Note:
|
||||
This function may return less then the specified number of chunks!
|
||||
|
||||
Args:
|
||||
x (Tensor): A Tensor to be divided.
|
||||
chunks (int): Number of chunks to return.
|
||||
axis (int): The axis along which to split. Default: 0.
|
||||
x (Tensor): A Tensor to be cut.
|
||||
chunks (int): Number of sub-tensors to cut.
|
||||
axis (int): Specify the dimensions that you want to split. Default: 0.
|
||||
|
||||
Returns:
|
||||
A tuple of sub-tensors.
|
||||
|
@ -5059,9 +5058,8 @@ def split(x, split_size_or_sections, axis=0):
|
|||
|
||||
def tril(input_x, diagonal=0): # pylint: disable=redefined-outer-name
|
||||
"""
|
||||
Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices input,
|
||||
the other elements of the result tensor out are set to 0.
|
||||
The lower triangular part of the matrix is defined as the elements on and below the diagonal.
|
||||
Returns the lower triangle part of 'input_x' (elements that contain the diagonal and below),
|
||||
and set the other elements to zeros.
|
||||
|
||||
Args:
|
||||
input_x (Tensor): A Tensor with shape :math:`(x_1, x_2, ..., x_R)`. The rank must be at least 2.
|
||||
|
|
|
@ -421,13 +421,15 @@ def angle(x):
|
|||
|
||||
def bincount(x, weights=None, minlength=0):
|
||||
"""
|
||||
Count number of occurrences of each value in array of non-negative ints.
|
||||
The number of bins (of size 1) is one larger than the largest value in `x`.
|
||||
If `minlength` is specified, there will be at least this number of bins in the
|
||||
output array (though it will be longer if necessary, depending on the contents
|
||||
of `x`). Each bin gives the number of occurrences of its index value in `x`. If
|
||||
`weights` is specified the input array is weighted by it, i.e. if a value `n`
|
||||
is found at position `i`, ``out[n] += weight[i]`` instead of ``out[n] += 1``.
|
||||
Counts the number of occurrences of each value in `x`.
|
||||
|
||||
If you don't specify 'minlength', the length of output Tensor will be
|
||||
the maximum value of the input 'x' plus one.
|
||||
|
||||
If `minlength` is specified, the length of output Tensor is the value of maximum of `x` plus 1 and `minlength`.
|
||||
|
||||
Each value in the output Tensor marks the number of occurrences of that index in 'x'.
|
||||
If 'weights' is specified, the output results are weighted, i.e ``out[n] += weight[i]`` instead of ``out[n] += 1``.
|
||||
|
||||
Args:
|
||||
x (Tensor): 1-d input tensor.
|
||||
|
|
Loading…
Reference in New Issue