forked from mindspore-Ecosystem/mindspore
Remove DataBuffer
This commit is contained in:
parent
98307c10db
commit
8535e89e6c
|
@ -13,7 +13,6 @@ file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc"
|
|||
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
|
||||
set(SRC_FILES_LIST
|
||||
execution_tree.cc
|
||||
data_buffer.cc
|
||||
data_schema.cc
|
||||
dataset_iterator.cc
|
||||
tree_adapter.cc
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
#else
|
||||
#include "minddata/dataset/engine/cache/stub/cache_grpc_client.h"
|
||||
#endif
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/util/lock.h"
|
||||
#include "minddata/dataset/util/cond_var.h"
|
||||
#include "minddata/dataset/util/queue_map.h"
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
#include "minddata/dataset/util/services.h"
|
||||
|
|
|
@ -115,7 +115,6 @@ Status IteratorConsumer::GetNextAsOrderedPair(std::vector<std::pair<std::string,
|
|||
Status ToDevice::Init(std::shared_ptr<DatasetNode> d) { return tree_adapter_->Compile(std::move(d), num_epochs_); }
|
||||
|
||||
Status ToDevice::Send() {
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
RETURN_IF_NOT_OK(tree_adapter_->Launch());
|
||||
std::shared_ptr<DatasetOp> root = std::shared_ptr<DatasetOp>(tree_adapter_->GetRoot());
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(root != nullptr, "Root is a nullptr.");
|
||||
|
|
|
@ -1,89 +0,0 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/util/allocator.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Name: Constructor #1
|
||||
// Description: This is the main constructor that is used for making a buffer
|
||||
DataBuffer::DataBuffer(int32_t id, BufferFlags flags) : buffer_id_(id), tensor_table_(nullptr), buffer_flags_(flags) {}
|
||||
|
||||
// A method for debug printing of the buffer
|
||||
void DataBuffer::Print(std::ostream &out, bool show_all) const {
|
||||
out << "bufferId: " << buffer_id_ << "\nflags: " << std::hex << buffer_flags_ << std::dec << "\n";
|
||||
|
||||
// If the column counts are set then it means that data has been set into
|
||||
// the tensor table. Display the tensor table here.
|
||||
if (this->NumCols() > 0) {
|
||||
out << "Tensor table:\n";
|
||||
for (int32_t row = 0; row < DataBuffer::NumRows(); ++row) {
|
||||
out << "Row # : " << row << "\n";
|
||||
TensorRow currRow = (*tensor_table_)[row];
|
||||
for (int32_t col = 0; col < this->NumCols(); ++col) {
|
||||
out << "Column #: " << col << "\n"; // Should add the column name here as well?
|
||||
// Call the tensor display
|
||||
out << *(currRow[col]) << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Remove me!! Callers should fetch rows via pop
|
||||
Status DataBuffer::GetTensor(std::shared_ptr<Tensor> *ptr, int32_t row_id, int32_t col_id) const {
|
||||
if (row_id < tensor_table_->size() && col_id < tensor_table_->at(row_id).size()) {
|
||||
*ptr = (tensor_table_->at(row_id)).at(col_id);
|
||||
} else {
|
||||
std::string err_msg =
|
||||
"indices for mTensorTable out of range: (" + std::to_string(row_id) + "," + std::to_string(col_id) + ").";
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Remove me!! Callers should fetch rows via pop
|
||||
Status DataBuffer::GetRow(int32_t row_id, TensorRow *ptr) const {
|
||||
if (tensor_table_ && !tensor_table_->empty() && row_id < tensor_table_->size()) {
|
||||
*ptr = tensor_table_->at(row_id);
|
||||
} else {
|
||||
std::string err_msg = "rowId for mTensorTable out of range: " + std::to_string(row_id);
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DataBuffer::PopRow(TensorRow *ptr) {
|
||||
if (tensor_table_ && !tensor_table_->empty()) {
|
||||
*ptr = std::move(tensor_table_->front());
|
||||
tensor_table_->pop_front();
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DataBuffer::SliceOff(int64_t number_of_rows) {
|
||||
while (number_of_rows > 0) {
|
||||
tensor_table_->pop_back();
|
||||
number_of_rows--;
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -1,114 +0,0 @@
|
|||
/**
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATA_BUFFER_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATA_BUFFER_H_
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/util/allocator.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/core/tensor_row.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \brief The DataBuffer class is a container of tensor data and is the unit of transmission between
|
||||
/// connectors of dataset operators. Inside the buffer, tensors are organized into a table-like format
|
||||
/// where n TensorRows may consist of m tensors (columns).
|
||||
class DataBuffer {
|
||||
public:
|
||||
// Buffer flags
|
||||
enum BufferFlags : uint32_t {
|
||||
kDeBFlagNone = 0,
|
||||
kDeBFlagEOF = 1, // The buffer is an eof end-of-data msg
|
||||
kDeBFlagEOE = 1u << 1, // The buffer is an eoe end-of-epoch msg
|
||||
kDeBFlagWait = 1u << 2, // The buffer is an control signal for workers to suspend operations
|
||||
kDeBFlagQuit = 1u << 3 // The buffer is a control signal for workers to quit
|
||||
};
|
||||
|
||||
// Name: Constructor #1
|
||||
// Description: This is the main constructor that is used for making a buffer
|
||||
DataBuffer(int32_t id, BufferFlags flags);
|
||||
|
||||
/// \brief default destructor
|
||||
~DataBuffer() = default;
|
||||
|
||||
/// \brief A method for debug printing of the buffer
|
||||
/// \param[in/out] out The stream to write to
|
||||
/// \param[in] show_all A boolean to toggle between details and summary printing
|
||||
void Print(std::ostream &out, bool show_all) const;
|
||||
|
||||
// Provide stream operator for displaying it
|
||||
friend std::ostream &operator<<(std::ostream &out, const DataBuffer &cb) {
|
||||
cb.Print(out, false);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Convenience getter functions for flag checking
|
||||
bool eof() const { return (static_cast<uint32_t>(buffer_flags_) & static_cast<uint32_t>(kDeBFlagEOF)); }
|
||||
|
||||
bool eoe() const { return (static_cast<uint32_t>(buffer_flags_) & static_cast<uint32_t>(kDeBFlagEOE)); }
|
||||
|
||||
bool wait() const { return (static_cast<uint32_t>(buffer_flags_) & static_cast<uint32_t>(kDeBFlagWait)); }
|
||||
|
||||
bool quit() const { return (static_cast<uint32_t>(buffer_flags_) & static_cast<uint32_t>(kDeBFlagQuit)); }
|
||||
|
||||
// Simple getter funcs
|
||||
int32_t id() const { return buffer_id_; }
|
||||
|
||||
void set_id(int32_t id) { buffer_id_ = id; }
|
||||
|
||||
int32_t NumRows() const { return ((tensor_table_) ? tensor_table_->size() : 0); }
|
||||
|
||||
int32_t NumCols() const {
|
||||
return (tensor_table_ == nullptr || tensor_table_->empty()) ? 0 : tensor_table_->at(0).size();
|
||||
}
|
||||
|
||||
BufferFlags buffer_flags() const { return buffer_flags_; }
|
||||
|
||||
// Remove me!! Callers should fetch rows via pop
|
||||
Status GetTensor(std::shared_ptr<Tensor> *, int32_t row_id, int32_t col_id) const;
|
||||
|
||||
// Remove me!! Callers should drain rows via pop.
|
||||
Status GetRow(int32_t row_id, TensorRow *) const;
|
||||
|
||||
// Get a row from the TensorTable
|
||||
Status PopRow(TensorRow *);
|
||||
|
||||
Status SliceOff(int64_t number_of_rows);
|
||||
|
||||
// Replacing mTensorTable, the unique_ptr assignment will release the old TensorTable.
|
||||
void set_tensor_table(std::unique_ptr<TensorQTable> new_table) { tensor_table_ = std::move(new_table); }
|
||||
|
||||
void set_flag(BufferFlags in_flag) {
|
||||
buffer_flags_ = static_cast<BufferFlags>(static_cast<uint32_t>(buffer_flags_) | static_cast<uint32_t>(in_flag));
|
||||
}
|
||||
|
||||
void Shuffle() {} // does nothing right now. possibly remove later
|
||||
|
||||
protected:
|
||||
int32_t buffer_id_; // An id for the buffer.
|
||||
std::unique_ptr<TensorQTable> tensor_table_; // A table (row major) of Tensors
|
||||
BufferFlags buffer_flags_; // bit mask for various buffer properties
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATA_BUFFER_H_
|
|
@ -19,7 +19,7 @@
|
|||
#include "minddata/dataset/core/data_type.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/core/tensor_shape.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/engine/datasetops/dataset_op.h"
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#include <iomanip>
|
||||
#include <utility>
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
|
|
|
@ -28,7 +28,6 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Forward declare
|
||||
class DataBuffer;
|
||||
class ExecutionTree;
|
||||
|
||||
// BarrierOp class implements the Barrier operator. It will block sending of rows until a signal has
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#ifdef ENABLE_PYTHON
|
||||
#include "minddata/dataset/core/pybind_support.h"
|
||||
#endif
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/kernels/data/data_utils.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class DataBuffer;
|
||||
|
||||
using PadInfo = std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>>;
|
||||
|
||||
|
|
|
@ -32,7 +32,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class DataBuffer;
|
||||
|
||||
class BucketBatchByLengthOp : public PipelineOp {
|
||||
public:
|
||||
|
|
|
@ -94,11 +94,9 @@ Status CacheBase::FetchSamplesToWorkers() {
|
|||
keys.reserve(1);
|
||||
std::vector<row_id_type> prefetch_keys;
|
||||
prefetch_keys.reserve(prefetch_size_);
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
while (!sampler_buffer->eoe()) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
while (!sample_row.eoe()) {
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); itr++) {
|
||||
++row_cnt_;
|
||||
|
@ -115,7 +113,7 @@ Status CacheBase::FetchSamplesToWorkers() {
|
|||
prefetch_keys.clear();
|
||||
}
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
}
|
||||
// Deal with any partial keys left.
|
||||
if (!prefetch_keys.empty()) {
|
||||
|
|
|
@ -95,7 +95,7 @@ void CacheLookupOp::SamplerPrint(std::ostream &out, bool show_all) const {
|
|||
// Then add our own info if any
|
||||
}
|
||||
}
|
||||
Status CacheLookupOp::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status CacheLookupOp::GetNextSample(TensorRow *out) {
|
||||
std::vector<row_id_type> cache_miss;
|
||||
RETURN_IF_NOT_OK(keys_miss_->Pop(0, &cache_miss));
|
||||
// Ignore the case we have no cache miss, we can't return empty samples.
|
||||
|
@ -104,19 +104,16 @@ Status CacheLookupOp::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
}
|
||||
// Special code for eoe
|
||||
if (cache_miss.at(0) == eoe_row_id) {
|
||||
*out_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
*out = std::move(TensorRow(TensorRow::kFlagEOE));
|
||||
} else {
|
||||
std::shared_ptr<Tensor> sample_ts;
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ts, cache_miss.size()));
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagNone);
|
||||
auto idPtr = sample_ts->begin<int64_t>();
|
||||
for (auto i = 0; i < cache_miss.size(); ++i) {
|
||||
*idPtr = cache_miss.at(i);
|
||||
++idPtr;
|
||||
}
|
||||
TensorRow row;
|
||||
row.push_back(sample_ts);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
*out = {sample_ts};
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -96,7 +96,7 @@ class CacheLookupOp : public CacheBase, public SamplerRT {
|
|||
Status ResetSampler() override;
|
||||
Status HandshakeRandomAccessOp(const RandomAccessOp *op) override;
|
||||
Status InitSampler() override;
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
void SamplerPrint(std::ostream &out, bool show_all) const override;
|
||||
bool AllowCacheMiss() override { return true; }
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/datasetops/repeat_op.h"
|
||||
#include "minddata/dataset/engine/dataset_iterator.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
#include "minddata/dataset/util/task_manager.h"
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/engine/datasetops/device_queue_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "utils/system/crc32c.h"
|
||||
|
|
|
@ -59,8 +59,6 @@ constexpr char kZipOp[] = "ZipOp";
|
|||
// Forward declare
|
||||
class ExecutionTree;
|
||||
|
||||
class DataBuffer;
|
||||
|
||||
class NodePass;
|
||||
|
||||
class SamplerRT;
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/dataset_iterator.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/util/task_manager.h"
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/epoch_ctrl_op.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
#include "minddata/dataset/util/task_manager.h"
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/map_op/cpu_map_job.h"
|
||||
#include "minddata/dataset/engine/datasetops/map_op/gpu_map_job.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Forward declare
|
||||
class DataBuffer;
|
||||
class ExecutionTree;
|
||||
|
||||
// MapOp class implements the Map operator. It will apply a list of operations to each record specified by column names.
|
||||
|
|
|
@ -30,8 +30,6 @@ namespace dataset {
|
|||
constexpr int32_t kEndOfActions = -1;
|
||||
|
||||
// Forward declares
|
||||
class DataBuffer;
|
||||
|
||||
class DbConnector;
|
||||
|
||||
// A ParallelOp provides a multi-threaded DatasetOp
|
||||
|
|
|
@ -26,8 +26,6 @@ namespace dataset {
|
|||
// forward declare
|
||||
class ExecutionTree;
|
||||
|
||||
class DataBuffer;
|
||||
|
||||
class PipelineOp : public DatasetOp {
|
||||
public:
|
||||
// Constructor
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include <unordered_map>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
|
||||
|
|
|
@ -27,9 +27,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// forward declare
|
||||
class DataBuffer;
|
||||
|
||||
class RenameOp : public PipelineOp {
|
||||
public:
|
||||
// The nested builder class inside of the RenameOp is used to help manage all of
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/engine/datasetops/repeat_op.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/datasetops/shuffle_op.h"
|
||||
#include "minddata/dataset/engine/dataset_iterator.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/util/log_adapter.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
|
|
|
@ -37,8 +37,6 @@ class ExecutionTree;
|
|||
|
||||
class DbConnector;
|
||||
|
||||
class DataBuffer;
|
||||
|
||||
class ShuffleOp : public PipelineOp {
|
||||
// Shuffle buffer state flags
|
||||
//
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/dataset_iterator.h"
|
||||
#include "minddata/dataset/engine/datasetops/skip_op.h"
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
|
|
|
@ -487,10 +487,8 @@ Status AlbumOp::GetNextRowPullMode(TensorRow *row) {
|
|||
if (image_rows_.empty()) PrescanEntry();
|
||||
if (sample_ids_ == nullptr) {
|
||||
RETURN_IF_NOT_OK(this->InitSampler());
|
||||
std::unique_ptr<DataBuffer> sample_buffer;
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_buffer));
|
||||
RETURN_IF_NOT_OK(sample_buffer->PopRow(&sample_row));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
sample_ids_ = sample_row[0];
|
||||
}
|
||||
if (curr_row_ + 1 > sample_ids_->Size()) {
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#include "minddata/dataset/engine/datasetops/source/generator_op.h"
|
||||
#include <iomanip>
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/task_manager.h"
|
||||
|
||||
|
@ -219,12 +219,10 @@ Status GeneratorOp::operator()() {
|
|||
if (eoe) {
|
||||
// Push out EOE upon StopIteration exception from generator
|
||||
MS_LOG(DEBUG) << "Generator operator sends out EOE.";
|
||||
std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
RETURN_IF_NOT_OK(out_connector_->SendEOE());
|
||||
if (IsLastIteration()) {
|
||||
// If last repeat or not repeated, push out EOF and exit master loop
|
||||
MS_LOG(DEBUG) << "Generator operator sends out EOF.";
|
||||
std::unique_ptr<DataBuffer> eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF);
|
||||
RETURN_IF_NOT_OK(out_connector_->SendEOF());
|
||||
MS_LOG(DEBUG) << "Generator operator main execution loop complete.";
|
||||
eof = true;
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -30,13 +30,11 @@ MappableLeafOp::MappableLeafOp(int32_t num_wkrs, int32_t queue_size, std::shared
|
|||
// Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work
|
||||
Status MappableLeafOp::operator()() {
|
||||
RETURN_IF_NOT_OK(LaunchThreadsAndInitOp());
|
||||
std::unique_ptr<DataBuffer> sampler_buffer;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
int64_t row_cnt = 0;
|
||||
while (true) { // each iteration is 1 epoch, breaks when IsLastIteration() is true
|
||||
while (sampler_buffer->eoe() == false) {
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row));
|
||||
while (sample_row.eoe() == false) {
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) {
|
||||
if ((*itr) >= num_rows_) {
|
||||
|
@ -46,7 +44,7 @@ Status MappableLeafOp::operator()() {
|
|||
RETURN_IF_NOT_OK(
|
||||
io_block_queues_[row_cnt++ % num_workers_]->Add(std::make_unique<IOBlock>(*itr, IOBlock::kDeIoBlockNone)));
|
||||
}
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
}
|
||||
if (IsLastIteration()) {
|
||||
std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe);
|
||||
|
@ -71,7 +69,7 @@ Status MappableLeafOp::operator()() {
|
|||
// If not the last repeat, self-reset and go to loop again.
|
||||
if (!IsLastIteration()) {
|
||||
RETURN_IF_NOT_OK(Reset());
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer));
|
||||
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
|
||||
}
|
||||
UpdateRepeatAndEpochCounter();
|
||||
}
|
||||
|
@ -90,7 +88,7 @@ Status MappableLeafOp::InitSampler() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_
|
||||
// contains the main logic of pulling a IOBlock from IOBlockQueue, load a row and push the row to out_connector_
|
||||
// IMPORTANT: 1 IOBlock produces 1 row
|
||||
Status MappableLeafOp::WorkerEntry(int32_t worker_id) {
|
||||
TaskManager::FindMe()->Post();
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/dataset_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
|
|
|
@ -42,7 +42,6 @@ namespace dataset {
|
|||
// Forward declares
|
||||
template <typename T>
|
||||
class Queue;
|
||||
class DataBuffer;
|
||||
|
||||
using mindrecord::ShardOperator;
|
||||
using mindrecord::ShardReader;
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
#include <limits>
|
||||
#include <memory>
|
||||
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -63,15 +62,15 @@ Status DistributedSamplerRT::InitSampler() {
|
|||
|
||||
if (offset_ != -1 || !even_dist_) {
|
||||
if (offset_ == -1) offset_ = 0;
|
||||
samples_per_buffer_ = (num_rows_ + offset_) / num_devices_;
|
||||
samples_per_tensor_ = (num_rows_ + offset_) / num_devices_;
|
||||
int64_t remainder = (num_rows_ + offset_) % num_devices_;
|
||||
if (device_id_ < remainder) samples_per_buffer_++;
|
||||
if (device_id_ < offset_) samples_per_buffer_--;
|
||||
if (device_id_ < remainder) samples_per_tensor_++;
|
||||
if (device_id_ < offset_) samples_per_tensor_--;
|
||||
} else {
|
||||
offset_ = 0;
|
||||
samples_per_buffer_ = (num_rows_ + num_devices_ - 1) / num_devices_; // equals to ceil(num_rows/num_devices)
|
||||
samples_per_tensor_ = (num_rows_ + num_devices_ - 1) / num_devices_; // equals to ceil(num_rows/num_devices)
|
||||
}
|
||||
samples_per_buffer_ = num_samples_ < samples_per_buffer_ ? num_samples_ : samples_per_buffer_;
|
||||
samples_per_tensor_ = num_samples_ < samples_per_tensor_ ? num_samples_ : samples_per_tensor_;
|
||||
if (shuffle_) {
|
||||
shuffle_vec_.reserve(num_rows_);
|
||||
for (int64_t i = 0; i < num_rows_; i++) {
|
||||
|
@ -79,51 +78,48 @@ Status DistributedSamplerRT::InitSampler() {
|
|||
}
|
||||
std::shuffle(shuffle_vec_.begin(), shuffle_vec_.end(), rnd_);
|
||||
}
|
||||
if (!samples_per_buffer_) non_empty_ = false;
|
||||
if (!samples_per_tensor_) non_empty_ = false;
|
||||
|
||||
is_initialized = true;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DistributedSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
if (cnt_ > samples_per_buffer_) {
|
||||
Status DistributedSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (cnt_ > samples_per_tensor_) {
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"Number of samples(cnt) that have already been filled in to buffer should be less than or "
|
||||
"equal to samples_per_buffer, but got cnt: " +
|
||||
std::to_string(cnt_) + ", samples_per_buffer: " + std::to_string(samples_per_buffer_));
|
||||
} else if (cnt_ == samples_per_buffer_ && (non_empty_ || !even_dist_)) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
if (!samples_per_buffer_) {
|
||||
std::to_string(cnt_) + ", samples_per_buffer: " + std::to_string(samples_per_tensor_));
|
||||
} else if (cnt_ == samples_per_tensor_ && (non_empty_ || !even_dist_)) {
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
if (!samples_per_tensor_) {
|
||||
non_empty_ = false;
|
||||
}
|
||||
} else if (!samples_per_buffer_ && !non_empty_) {
|
||||
} else if (!samples_per_tensor_ && !non_empty_) {
|
||||
// If the buffer is empty, we add samples with subscript 0 in the current dataset.
|
||||
// This step is to make up for the solution that the code default buffer is not empty before.
|
||||
// We will remove this value in the concat phase
|
||||
non_empty_ = true;
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(cnt_, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ids, 1));
|
||||
auto id_ptr = sample_ids->begin<int64_t>();
|
||||
// add index 0
|
||||
*id_ptr = 0;
|
||||
TensorRow row(1, sample_ids);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sample_ids};
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(cnt_, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ids, samples_per_buffer_));
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ids, samples_per_tensor_));
|
||||
auto id_ptr = sample_ids->begin<int64_t>();
|
||||
bool flag_add_1 = false;
|
||||
while (cnt_ < samples_per_buffer_ && id_ptr != sample_ids->end<int64_t>()) {
|
||||
while (cnt_ < samples_per_tensor_ && id_ptr != sample_ids->end<int64_t>()) {
|
||||
int64_t middle_value = num_devices_ * cnt_ + device_id_ - offset_;
|
||||
// if index < 0, we move back one place
|
||||
if (middle_value < 0) {
|
||||
samples_per_buffer_++;
|
||||
samples_per_tensor_++;
|
||||
cnt_++;
|
||||
flag_add_1 = true;
|
||||
middle_value = num_devices_ * cnt_ + device_id_ - offset_;
|
||||
|
@ -145,17 +141,16 @@ Status DistributedSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buff
|
|||
|
||||
// If 1 was added before, we will cut off 1 here
|
||||
if (flag_add_1) {
|
||||
samples_per_buffer_--;
|
||||
samples_per_tensor_--;
|
||||
cnt_--;
|
||||
}
|
||||
TensorRow row(1, sample_ids);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sample_ids};
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DistributedSamplerRT::ResetSampler() {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(cnt_ == samples_per_buffer_, "ERROR Reset() called early/late");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(cnt_ == samples_per_tensor_, "ERROR Reset() called early/late");
|
||||
cnt_ = 0;
|
||||
|
||||
if (shuffle_ == true) {
|
||||
|
|
|
@ -50,7 +50,7 @@ class DistributedSamplerRT : public SamplerRT {
|
|||
/// \param std::unique_ptr<DataBuffer> * pBuffer
|
||||
/// \param int32_t workerId
|
||||
/// \return Status code
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
/// Init sampler, called by base class or python
|
||||
Status InitSampler() override;
|
||||
|
|
|
@ -52,7 +52,7 @@ Status PKSamplerRT::InitSampler() {
|
|||
num_samples_ = num_rows_;
|
||||
}
|
||||
|
||||
samples_per_buffer_ = (samples_per_buffer_ > num_samples_) ? num_samples_ : samples_per_buffer_;
|
||||
samples_per_tensor_ = (samples_per_tensor_ > num_samples_) ? num_samples_ : samples_per_tensor_;
|
||||
if (shuffle_ == true) {
|
||||
std::shuffle(labels_.begin(), labels_.end(), rnd_);
|
||||
} else {
|
||||
|
@ -65,19 +65,18 @@ Status PKSamplerRT::InitSampler() {
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status PKSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status PKSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (next_id_ > num_samples_ || num_samples_ == 0) {
|
||||
RETURN_STATUS_UNEXPECTED("Index must be less than or equal to num_samples, but got: " + std::to_string(next_id_));
|
||||
} else if (next_id_ == num_samples_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(next_id_, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
int64_t last_id = (samples_per_buffer_ + next_id_ > num_samples_) ? num_samples_ : samples_per_buffer_ + next_id_;
|
||||
int64_t last_id = (samples_per_tensor_ + next_id_ > num_samples_) ? num_samples_ : samples_per_tensor_ + next_id_;
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sample_ids, last_id - next_id_));
|
||||
auto id_ptr = sample_ids->begin<int64_t>();
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(samples_per_class_ != 0, "samples cannot be zero.");
|
||||
|
@ -95,8 +94,7 @@ Status PKSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
id_ptr++;
|
||||
}
|
||||
|
||||
TensorRow row(1, sample_ids);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sample_ids};
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -41,7 +41,7 @@ class PKSamplerRT : public SamplerRT { // NOT YET FINISHED
|
|||
// @param std::unique_ptr<DataBuffer pBuffer
|
||||
// @param int32_t workerId
|
||||
// @return Status The status code returned
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
// first handshake between leaf source op and Sampler. This func will determine the amount of data
|
||||
// in the dataset that we can sample from.
|
||||
|
|
|
@ -23,9 +23,9 @@ namespace dataset {
|
|||
PythonSamplerRT::PythonSamplerRT(int64_t num_samples, py::object py_sampler_instance, int64_t samples_per_buffer)
|
||||
: SamplerRT(num_samples, samples_per_buffer), py_sampler_instance(py_sampler_instance), need_to_reset_(false) {}
|
||||
|
||||
Status PythonSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status PythonSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (need_to_reset_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
|
@ -34,7 +34,6 @@ Status PythonSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
std::shared_ptr<Tensor> sample_ids;
|
||||
{
|
||||
py::gil_scoped_acquire gil_acquire;
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagNone);
|
||||
if (Py_IsInitialized() == 0) {
|
||||
return Status(StatusCode::kMDPythonInterpreterFailure, "Python Interpreter is finalized");
|
||||
}
|
||||
|
@ -57,8 +56,7 @@ Status PythonSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
"Invalid data, python sampler iterator should return an integer index.");
|
||||
}
|
||||
}
|
||||
TensorRow row(1, sample_ids);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sample_ids};
|
||||
need_to_reset_ = true;
|
||||
}
|
||||
return Status::OK();
|
||||
|
|
|
@ -48,7 +48,7 @@ class PythonSamplerRT : public SamplerRT {
|
|||
// @param std::unique_ptr<DataBuffer> pBuffer - Buffer to be returned to corresponding Dataset Op
|
||||
// @param int32_t workerId - not meant to be used
|
||||
// @return Status The status code returned
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
// Printer for debugging purposes.
|
||||
// @param out - output stream to write to
|
||||
|
|
|
@ -31,19 +31,18 @@ RandomSamplerRT::RandomSamplerRT(int64_t num_samples, bool replacement, bool res
|
|||
dist(nullptr),
|
||||
reshuffle_each_epoch_(reshuffle_each_epoch) {}
|
||||
|
||||
Status RandomSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status RandomSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (next_id_ > num_samples_) {
|
||||
RETURN_STATUS_UNEXPECTED("RandomSampler Internal Error");
|
||||
} else if (next_id_ == num_samples_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(next_id_, DataBuffer::kDeBFlagNone);
|
||||
|
||||
std::shared_ptr<Tensor> sampleIds;
|
||||
int64_t last_id = std::min(samples_per_buffer_ + next_id_, num_samples_);
|
||||
int64_t last_id = std::min(samples_per_tensor_ + next_id_, num_samples_);
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sampleIds, last_id - next_id_));
|
||||
auto id_ptr = sampleIds->begin<int64_t>();
|
||||
|
||||
|
@ -62,8 +61,7 @@ Status RandomSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
*(id_ptr + static_cast<ptrdiff_t>(i)) = sampled_id;
|
||||
}
|
||||
next_id_ = last_id;
|
||||
TensorRow row(1, sampleIds);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sampleIds};
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -81,7 +79,7 @@ Status RandomSamplerRT::InitSampler() {
|
|||
num_samples_ > 0 && num_rows_ > 0,
|
||||
"Invalid parameter, num_samples & num_rows must be greater than 0, but got num_samples: " +
|
||||
std::to_string(num_samples_) + ", num_rows: " + std::to_string(num_rows_));
|
||||
samples_per_buffer_ = samples_per_buffer_ > num_samples_ ? num_samples_ : samples_per_buffer_;
|
||||
samples_per_tensor_ = samples_per_tensor_ > num_samples_ ? num_samples_ : samples_per_tensor_;
|
||||
rnd_.seed(seed_);
|
||||
|
||||
if (!replacement_) {
|
||||
|
|
|
@ -41,7 +41,7 @@ class RandomSamplerRT : public SamplerRT {
|
|||
// @param std::unique_ptr<DataBuffer> pBuffer - Buffer to be returned to StorageOp
|
||||
// @param int32_t workerId - not meant to be used
|
||||
// @return Status The status code returned
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
// meant to be called by base class or python
|
||||
Status InitSampler() override;
|
||||
|
|
|
@ -36,7 +36,7 @@ Status RandomAccessOp::GetNumRowsInDataset(int64_t *num) const {
|
|||
SamplerRT::SamplerRT(int64_t num_samples, int64_t samples_per_buffer)
|
||||
: num_rows_(0),
|
||||
num_samples_(num_samples),
|
||||
samples_per_buffer_(samples_per_buffer),
|
||||
samples_per_tensor_(samples_per_buffer),
|
||||
col_desc_(nullptr),
|
||||
is_initialized(false) {}
|
||||
|
||||
|
@ -91,22 +91,19 @@ void SamplerRT::SamplerPrint(std::ostream &out, bool show_all) const {
|
|||
|
||||
#ifdef ENABLE_PYTHON
|
||||
Status SamplerRT::GetAllIdsThenReset(py::array *data) {
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
std::shared_ptr<Tensor> sample_ids;
|
||||
TensorRow sample_row;
|
||||
|
||||
// A call to derived class to get sample ids wrapped inside a buffer
|
||||
RETURN_IF_NOT_OK(GetNextSample(&db));
|
||||
// Get the only tensor inside the buffer that contains the actual SampleIds for the entire epoch
|
||||
RETURN_IF_NOT_OK(db->GetRow(0, &sample_row));
|
||||
// Get the only tensor inside the row that contains the actual SampleIds for the entire epoch
|
||||
RETURN_IF_NOT_OK(GetNextSample(&sample_row));
|
||||
sample_ids = sample_row[0];
|
||||
|
||||
// check this buffer is not a ctrl buffer
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(db->buffer_flags() == DataBuffer::kDeBFlagNone, "ERROR ctrl buffer received");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(sample_row.Flags() == TensorRow::kFlagNone, "ERROR ctrl row received");
|
||||
|
||||
// perform error checking! Next buffer supposed to be EOE since last one already contains all ids for current epoch
|
||||
RETURN_IF_NOT_OK(GetNextSample(&db));
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(db->eoe(), "ERROR Non EOE received");
|
||||
RETURN_IF_NOT_OK(GetNextSample(&sample_row));
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(sample_row.eoe(), "ERROR Non EOE received");
|
||||
// Reset Sampler since this is the end of the epoch
|
||||
RETURN_IF_NOT_OK(ResetSampler());
|
||||
|
||||
|
@ -178,13 +175,11 @@ Status SamplerRT::AddChild(std::shared_ptr<SamplerRT> child) {
|
|||
bool SamplerRT::HasChildSampler() { return !child_.empty(); }
|
||||
|
||||
Status SamplerRT::GetAssociatedChildId(int64_t *out_associated_id, int64_t id) {
|
||||
if (child_ids_ == nullptr) {
|
||||
if (child_ids_.empty()) {
|
||||
RETURN_STATUS_UNEXPECTED("Trying to get associated child id, but there are no child ids!");
|
||||
}
|
||||
|
||||
TensorRow sample_row;
|
||||
RETURN_IF_NOT_OK(child_ids_->GetRow(0, &sample_row));
|
||||
std::shared_ptr<Tensor> sample_ids = sample_row[0];
|
||||
std::shared_ptr<Tensor> sample_ids = child_ids_[0];
|
||||
RETURN_IF_NOT_OK(sample_ids->GetItemAt<int64_t>(out_associated_id, {id}));
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/dataset_op.h"
|
||||
|
||||
|
@ -66,7 +66,7 @@ class SamplerRT {
|
|||
// @param int64_t samplesPerBuffer: Num of Sampler Ids to fetch via 1 GetNextBuffer call
|
||||
SamplerRT(int64_t num_samples, int64_t samples_per_buffer);
|
||||
|
||||
SamplerRT(const SamplerRT &s) : SamplerRT(s.num_samples_, s.samples_per_buffer_) {}
|
||||
SamplerRT(const SamplerRT &s) : SamplerRT(s.num_samples_, s.samples_per_tensor_) {}
|
||||
|
||||
// default destructor
|
||||
~SamplerRT() = default;
|
||||
|
@ -76,7 +76,7 @@ class SamplerRT {
|
|||
// @param std::unique_ptr<DataBuffer> pBuffer - Buffer to be returned to StorageOp
|
||||
// @param int32_t workerId - not meant to be used
|
||||
// @return Status The status code returned
|
||||
virtual Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) = 0;
|
||||
virtual Status GetNextSample(TensorRow *out) = 0;
|
||||
|
||||
// This function only called by python layer. Not needed by Android.
|
||||
#ifdef ENABLE_PYTHON
|
||||
|
@ -170,10 +170,10 @@ class SamplerRT {
|
|||
int64_t num_samples_;
|
||||
|
||||
bool is_initialized;
|
||||
int64_t samples_per_buffer_;
|
||||
int64_t samples_per_tensor_;
|
||||
std::unique_ptr<ColDescriptor> col_desc_;
|
||||
std::vector<std::shared_ptr<SamplerRT>> child_; // Child nodes
|
||||
std::unique_ptr<DataBuffer> child_ids_;
|
||||
TensorRow child_ids_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -24,23 +24,22 @@ namespace dataset {
|
|||
SequentialSamplerRT::SequentialSamplerRT(int64_t num_samples, int64_t start_index, int64_t samples_per_buffer)
|
||||
: SamplerRT(num_samples, samples_per_buffer), current_id_(start_index), start_index_(start_index), id_count_(0) {}
|
||||
|
||||
Status SequentialSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status SequentialSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (id_count_ > num_samples_) {
|
||||
RETURN_STATUS_UNEXPECTED("SequentialSampler Internal Error");
|
||||
} else if (id_count_ == num_samples_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(current_id_, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> sampleIds;
|
||||
|
||||
// Compute how many ids are left to pack, and pack this amount into a new buffer. Respect the setting for
|
||||
// samples per buffer though.
|
||||
int64_t remaining_ids = num_samples_ - id_count_;
|
||||
int64_t num_elements = std::min(remaining_ids, samples_per_buffer_);
|
||||
int64_t num_elements = std::min(remaining_ids, samples_per_tensor_);
|
||||
|
||||
RETURN_IF_NOT_OK(CreateSamplerTensor(&sampleIds, num_elements));
|
||||
auto idPtr = sampleIds->begin<int64_t>();
|
||||
|
@ -57,8 +56,7 @@ Status SequentialSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffe
|
|||
|
||||
id_count_ += num_elements; // Count the packed ids towards our overall sample count
|
||||
|
||||
TensorRow row(1, sampleIds);
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, row));
|
||||
(*out) = {sampleIds};
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -83,9 +81,9 @@ Status SequentialSamplerRT::InitSampler() {
|
|||
num_samples_ = available_row_count;
|
||||
}
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(
|
||||
(num_samples_ > 0 && samples_per_buffer_ > 0) || num_samples_ == 0,
|
||||
"Invalid parameter, samples_per_buffer must be greater than 0, but got " + std::to_string(samples_per_buffer_));
|
||||
samples_per_buffer_ = samples_per_buffer_ > num_samples_ ? num_samples_ : samples_per_buffer_;
|
||||
(num_samples_ > 0 && samples_per_tensor_ > 0) || num_samples_ == 0,
|
||||
"Invalid parameter, samples_per_buffer must be greater than 0, but got " + std::to_string(samples_per_tensor_));
|
||||
samples_per_tensor_ = samples_per_tensor_ > num_samples_ ? num_samples_ : samples_per_tensor_;
|
||||
|
||||
is_initialized = true;
|
||||
return Status::OK();
|
||||
|
|
|
@ -47,7 +47,7 @@ class SequentialSamplerRT : public SamplerRT {
|
|||
// @param std::unique_ptr<DataBuffer> pBuffer - Buffer to be returned to corresponding Dataset Op
|
||||
// @param int32_t workerId - not meant to be used
|
||||
// @return Status The status code returned
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
/// \brief Recursively calls this function on its children to get the actual number of samples on a tree of samplers
|
||||
/// \note This is not a getter for num_samples_. For example, if num_samples_ is 0 or if it's smaller than num_rows,
|
||||
|
|
|
@ -39,8 +39,8 @@ Status SubsetSamplerRT::InitSampler() {
|
|||
num_samples_ = static_cast<int64_t>(indices_.size());
|
||||
}
|
||||
|
||||
if (samples_per_buffer_ > num_samples_) {
|
||||
samples_per_buffer_ = num_samples_;
|
||||
if (samples_per_tensor_ > num_samples_) {
|
||||
samples_per_tensor_ = num_samples_;
|
||||
}
|
||||
|
||||
is_initialized = true;
|
||||
|
@ -61,19 +61,18 @@ Status SubsetSamplerRT::ResetSampler() {
|
|||
}
|
||||
|
||||
// Get the sample ids.
|
||||
Status SubsetSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status SubsetSamplerRT::GetNextSample(TensorRow *out) {
|
||||
// All samples have been drawn
|
||||
if (sample_id_ == num_samples_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(buffer_id_++, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(buffer_id_++, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> outputIds;
|
||||
|
||||
int64_t last_id = sample_id_ + samples_per_buffer_;
|
||||
int64_t last_id = sample_id_ + samples_per_tensor_;
|
||||
// Handling the return all samples at once, and when last draw is not a full batch.
|
||||
if (last_id > num_samples_) {
|
||||
last_id = num_samples_;
|
||||
|
@ -101,8 +100,7 @@ Status SubsetSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
|||
sample_id_++;
|
||||
}
|
||||
|
||||
// Create a TensorTable from that single tensor and push into DataBuffer
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, TensorRow(1, outputIds)));
|
||||
(*out) = {outputIds};
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
|
|
|
@ -47,9 +47,9 @@ class SubsetSamplerRT : public SamplerRT {
|
|||
Status ResetSampler() override;
|
||||
|
||||
/// Get the sample ids.
|
||||
/// \param[out] out_buffer The address of a unique_ptr to DataBuffer where the sample ids will be placed.
|
||||
/// \param[out] out The address of a unique_ptr to DataBuffer where the sample ids will be placed.
|
||||
/// @note the sample ids (int64_t) will be placed in one Tensor and be placed into pBuffer.
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
/// Printer for debugging purposes.
|
||||
/// \param out - output stream to write to
|
||||
|
|
|
@ -49,9 +49,9 @@ Status WeightedRandomSamplerRT::InitSampler() {
|
|||
num_rows_ > 0 && num_samples_,
|
||||
"Invalid parameter, num_samples and num_rows must be greater than 0, but got num_rows: " +
|
||||
std::to_string(num_rows_) + ", num_samples: " + std::to_string(num_samples_));
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(samples_per_buffer_ > 0,
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(samples_per_tensor_ > 0,
|
||||
"Invalid parameter, samples_per_buffer must be greater than 0, but got " +
|
||||
std::to_string(samples_per_buffer_) + ".\n");
|
||||
std::to_string(samples_per_tensor_) + ".\n");
|
||||
|
||||
if (weights_.size() > static_cast<size_t>(num_rows_)) {
|
||||
return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__,
|
||||
|
@ -69,7 +69,7 @@ Status WeightedRandomSamplerRT::InitSampler() {
|
|||
// Initialize random generator with seed from config manager
|
||||
rand_gen_.seed(GetSeed());
|
||||
|
||||
samples_per_buffer_ = (samples_per_buffer_ > num_samples_) ? num_samples_ : samples_per_buffer_;
|
||||
samples_per_tensor_ = (samples_per_tensor_ > num_samples_) ? num_samples_ : samples_per_tensor_;
|
||||
|
||||
if (!replacement_) {
|
||||
exp_dist_ = std::make_unique<std::exponential_distribution<>>(1);
|
||||
|
@ -117,7 +117,7 @@ Status WeightedRandomSamplerRT::ResetSampler() {
|
|||
}
|
||||
|
||||
// Get the sample ids.
|
||||
Status WeightedRandomSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
|
||||
Status WeightedRandomSamplerRT::GetNextSample(TensorRow *out) {
|
||||
if (weights_.size() > static_cast<size_t>(num_rows_)) {
|
||||
return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__,
|
||||
"Invalid parameter, size of sample weights must be less than or equal to num of data, "
|
||||
|
@ -133,16 +133,15 @@ Status WeightedRandomSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_b
|
|||
}
|
||||
|
||||
if (sample_id_ == num_samples_) {
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(buffer_id_++, DataBuffer::kDeBFlagEOE);
|
||||
(*out) = TensorRow(TensorRow::kFlagEOE);
|
||||
} else {
|
||||
if (HasChildSampler()) {
|
||||
RETURN_IF_NOT_OK(child_[0]->GetNextSample(&child_ids_));
|
||||
}
|
||||
|
||||
(*out_buffer) = std::make_unique<DataBuffer>(buffer_id_++, DataBuffer::kDeBFlagNone);
|
||||
std::shared_ptr<Tensor> outputIds;
|
||||
|
||||
int64_t last_id = sample_id_ + samples_per_buffer_;
|
||||
int64_t last_id = sample_id_ + samples_per_tensor_;
|
||||
// Handling the return all samples at once, and when last draw is not a full batch.
|
||||
if (last_id > num_samples_) {
|
||||
last_id = num_samples_;
|
||||
|
@ -178,8 +177,7 @@ Status WeightedRandomSamplerRT::GetNextSample(std::unique_ptr<DataBuffer> *out_b
|
|||
sample_id_++;
|
||||
}
|
||||
|
||||
// Create a TensorTable from that single tensor and push into DataBuffer
|
||||
(*out_buffer)->set_tensor_table(std::make_unique<TensorQTable>(1, TensorRow(1, outputIds)));
|
||||
(*out) = {outputIds};
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
|
|
|
@ -51,7 +51,7 @@ class WeightedRandomSamplerRT : public SamplerRT {
|
|||
// Get the sample ids.
|
||||
// @param[out] out_buffer The address of a unique_ptr to DataBuffer where the sample ids will be placed.
|
||||
// @note the sample ids (int64_t) will be placed in one Tensor and be placed into pBuffer.
|
||||
Status GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) override;
|
||||
Status GetNextSample(TensorRow *out) override;
|
||||
|
||||
// Printer for debugging purposes.
|
||||
// @param out - output stream to write to
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
|
||||
#include "./tinyxml2.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/parallel_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
#include <algorithm>
|
||||
#include "utils/ms_utils.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/dataset_iterator.h"
|
||||
#include "minddata/dataset/engine/datasetops/take_op.h"
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include <utility>
|
||||
#include <iomanip>
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/db_connector.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
|
|
|
@ -29,8 +29,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// forward declare
|
||||
class DataBuffer;
|
||||
|
||||
class ZipOp : public PipelineOp {
|
||||
public:
|
||||
|
|
|
@ -18,8 +18,9 @@
|
|||
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include "minddata/dataset/core/tensor_row.h"
|
||||
#include "minddata/dataset/engine/connector.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
#include "minddata/dataset/engine/connector.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
|
||||
|
|
|
@ -181,7 +181,6 @@ if(BUILD_MINDDATA STREQUAL "full")
|
|||
${MINDDATA_DIR}/engine/datasetops/source/sampler/weighted_random_sampler.cc
|
||||
${MINDDATA_DIR}/engine/runtime_context.cc
|
||||
${MINDDATA_DIR}/engine/tree_adapter.cc
|
||||
${MINDDATA_DIR}/engine/data_buffer.cc
|
||||
${MINDDATA_DIR}/engine/execution_tree.cc
|
||||
${MINDDATA_DIR}/engine/dataset_iterator.cc
|
||||
${MINDDATA_DIR}/core/tensor_row.cc
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
@ -91,69 +91,69 @@ class AlbumOp {
|
|||
/// \brief Load image to tensor
|
||||
/// \param[in] image_file Image name of file
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadImageTensor(const std::string &image_file, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load vector of ints to tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing multi-dimensional label
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIntArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load vector of floatss to tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing array data
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadFloatArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load string array into a tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadStringArrayTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load string into a tensor, append tensor to tensor
|
||||
/// \param[in] json_obj Json object containing string tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadStringTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load float value to tensor
|
||||
/// \param[in] json_obj Json object containing float
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadFloatTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load int value to tensor
|
||||
/// \param[in] json_obj Json object containing int
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIntTensor(const nlohmann::json &json_obj, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load emtpy tensor to tensor
|
||||
/// \brief Load empty tensor to tensor
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadEmptyTensor(uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load id from file name to tensor
|
||||
/// \param[in] file The file name to get ID from
|
||||
/// \param[in] col_num Column num in schema
|
||||
/// \param[inout] Tensor to push to
|
||||
/// \param[in,out] Tensor to push to
|
||||
/// \return Status The error code returned
|
||||
Status LoadIDTensor(const std::string &file, uint32_t col_num, TensorPtr *tensor);
|
||||
|
||||
/// \brief Load a tensor according to a json file
|
||||
/// \param[in] row_id_type row_id - id for this tensor row
|
||||
/// \param[in] ImageColumns file Json file location
|
||||
/// \param[inout] TensorRow Json content stored into a tensor row
|
||||
/// \param[in,out] TensorRow Json content stored into a tensor row
|
||||
/// \return Status The error code returned
|
||||
Status LoadTensorRow(row_id_type row_id, const std::string &file,
|
||||
std::unordered_map<std::string, std::shared_ptr<Tensor>> *map_row);
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/distributed_sampler.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
@ -52,11 +52,9 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsOne) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -65,8 +63,8 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsOne) {
|
|||
|
||||
ASSERT_EQ(4, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestDistributedSampler, TestTwoShardsTwo) {
|
||||
|
@ -78,11 +76,10 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsTwo) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -91,8 +88,8 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsTwo) {
|
|||
|
||||
ASSERT_EQ(3, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestDistributedSampler, TestThreeShards) {
|
||||
|
@ -104,11 +101,10 @@ TEST_F(MindDataTestDistributedSampler, TestThreeShards) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -117,7 +113,6 @@ TEST_F(MindDataTestDistributedSampler, TestThreeShards) {
|
|||
|
||||
ASSERT_EQ(0, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
#include "minddata/dataset/engine/datasetops/rename_op.h"
|
||||
#include "common/common.h"
|
||||
#include "utils/ms_utils.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
|
|
@ -39,7 +39,7 @@ class MindDataTestStandAloneSampler : public UT::DatasetOpTesting {
|
|||
protected:
|
||||
class MockStorageOp : public RandomAccessOp {
|
||||
public:
|
||||
MockStorageOp(int64_t val){
|
||||
MockStorageOp(int64_t val) {
|
||||
// row count is in base class as protected member
|
||||
// GetNumRowsInDataset does not need an override, the default from base class is fine.
|
||||
num_rows_ = val;
|
||||
|
@ -57,17 +57,17 @@ TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) {
|
|||
row.push_back(t);
|
||||
}
|
||||
MockStorageOp mock(20);
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
std::shared_ptr<Tensor> tensor;
|
||||
int64_t num_samples = 0;
|
||||
TensorRow sample_row;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
std::shared_ptr<SamplerRT> sampler =
|
||||
std::make_shared<DistributedSamplerRT>(num_samples, 3, i % 3, (i < 3 ? false : true));
|
||||
sampler->HandshakeRandomAccessOp(&mock);
|
||||
sampler->GetNextSample(&db);
|
||||
db->GetTensor(&tensor, 0, 0);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
MS_LOG(DEBUG) << (*tensor);
|
||||
if(i < 3) { // This is added due to std::shuffle()
|
||||
if (i < 3) { // This is added due to std::shuffle()
|
||||
EXPECT_TRUE((*tensor) == (*row[i]));
|
||||
}
|
||||
}
|
||||
|
@ -83,20 +83,21 @@ TEST_F(MindDataTestStandAloneSampler, TestStandAoneSequentialSampler) {
|
|||
int64_t num_samples = 0;
|
||||
int64_t start_index = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index, 3);
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
|
||||
std::shared_ptr<Tensor> tensor;
|
||||
TensorRow sample_row;
|
||||
sampler->HandshakeRandomAccessOp(&mock);
|
||||
sampler->GetNextSample(&db);
|
||||
db->GetTensor(&tensor, 0, 0);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
EXPECT_TRUE((*tensor) == (*label1));
|
||||
sampler->GetNextSample(&db);
|
||||
db->GetTensor(&tensor, 0, 0);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
EXPECT_TRUE((*tensor) == (*label2));
|
||||
sampler->ResetSampler();
|
||||
sampler->GetNextSample(&db);
|
||||
db->GetTensor(&tensor, 0, 0);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
EXPECT_TRUE((*tensor) == (*label1));
|
||||
sampler->GetNextSample(&db);
|
||||
db->GetTensor(&tensor, 0, 0);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
EXPECT_TRUE((*tensor) == (*label2));
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
|
||||
|
||||
|
@ -46,11 +46,10 @@ TEST_F(MindDataTestSubsetRandomSampler, TestAllAtOnce) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -61,8 +60,8 @@ TEST_F(MindDataTestSubsetRandomSampler, TestAllAtOnce) {
|
|||
ASSERT_NE(in_set.find(out[i]), in_set.end());
|
||||
}
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestSubsetRandomSampler, TestGetNextBuffer) {
|
||||
|
@ -75,23 +74,20 @@ TEST_F(MindDataTestSubsetRandomSampler, TestGetNextBuffer) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
int epoch = 0;
|
||||
while (!db->eoe()) {
|
||||
while (!row.eoe()) {
|
||||
epoch++;
|
||||
db->PopRow(&row);
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
}
|
||||
}
|
||||
db.reset();
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
}
|
||||
|
||||
ASSERT_EQ(epoch, (total_samples + samples_per_buffer - 1) / samples_per_buffer);
|
||||
|
@ -107,12 +103,10 @@ TEST_F(MindDataTestSubsetRandomSampler, TestReset) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -125,9 +119,8 @@ TEST_F(MindDataTestSubsetRandomSampler, TestReset) {
|
|||
|
||||
sampler.ResetSampler();
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), false);
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), false);
|
||||
out.clear();
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
|
@ -139,6 +132,6 @@ TEST_F(MindDataTestSubsetRandomSampler, TestReset) {
|
|||
ASSERT_NE(in_set.find(out[i]), in_set.end());
|
||||
}
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/subset_sampler.h"
|
||||
|
||||
|
@ -46,11 +46,10 @@ TEST_F(MindDataTestSubsetSampler, TestAllAtOnce) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -61,8 +60,8 @@ TEST_F(MindDataTestSubsetSampler, TestAllAtOnce) {
|
|||
ASSERT_EQ(in[i], out[i]);
|
||||
}
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestSubsetSampler, TestGetNextBuffer) {
|
||||
|
@ -75,23 +74,21 @@ TEST_F(MindDataTestSubsetSampler, TestGetNextBuffer) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
int epoch = 0;
|
||||
while (!db->eoe()) {
|
||||
while (!row.eoe()) {
|
||||
epoch++;
|
||||
db->PopRow(&row);
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
}
|
||||
}
|
||||
db.reset();
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
}
|
||||
|
||||
ASSERT_EQ(epoch, (total_samples + samples_per_buffer - 1) / samples_per_buffer);
|
||||
|
@ -107,12 +104,11 @@ TEST_F(MindDataTestSubsetSampler, TestReset) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<int64_t> out;
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -125,9 +121,9 @@ TEST_F(MindDataTestSubsetSampler, TestReset) {
|
|||
|
||||
sampler.ResetSampler();
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), false);
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), false);
|
||||
|
||||
out.clear();
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<int64_t>(); it != t->end<int64_t>(); it++) {
|
||||
|
@ -139,6 +135,6 @@ TEST_F(MindDataTestSubsetSampler, TestReset) {
|
|||
ASSERT_EQ(in[i], out[i]);
|
||||
}
|
||||
|
||||
ASSERT_EQ(sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
|
||||
#include "minddata/dataset/include/constants.h"
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/weighted_random_sampler.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
@ -55,11 +55,10 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -69,8 +68,8 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotReplacement) {
|
|||
|
||||
ASSERT_EQ(num_samples, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
|
||||
|
@ -85,11 +84,10 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -105,8 +103,8 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
|
|||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferReplacement) {
|
||||
|
@ -121,21 +119,20 @@ TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
int epoch = 0;
|
||||
while (!db->eoe()) {
|
||||
while (!row.eoe()) {
|
||||
epoch++;
|
||||
db->PopRow(&row);
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
}
|
||||
}
|
||||
db.reset();
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
}
|
||||
|
||||
ASSERT_EQ(epoch, (num_samples + samples_per_buffer - 1) / samples_per_buffer);
|
||||
|
@ -157,22 +154,21 @@ TEST_F(MindDataTestWeightedRandomSampler, TestGetNextBufferNoReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
int epoch = 0;
|
||||
while (!db->eoe()) {
|
||||
while (!row.eoe()) {
|
||||
epoch++;
|
||||
db->PopRow(&row);
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
freq[*it]++;
|
||||
}
|
||||
}
|
||||
db.reset();
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
}
|
||||
|
||||
// Without replacement, each sample only drawn once.
|
||||
|
@ -198,11 +194,10 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -211,14 +206,14 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
|
|||
}
|
||||
ASSERT_EQ(num_samples, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
|
||||
m_sampler.ResetSampler();
|
||||
out.clear();
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -227,8 +222,8 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
|
|||
}
|
||||
ASSERT_EQ(num_samples, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
||||
|
@ -243,11 +238,10 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
std::unique_ptr<DataBuffer> db;
|
||||
TensorRow row;
|
||||
std::vector<uint64_t> out;
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -256,8 +250,8 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|||
}
|
||||
ASSERT_EQ(num_samples, out.size());
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
|
||||
m_sampler.ResetSampler();
|
||||
out.clear();
|
||||
|
@ -265,8 +259,8 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|||
freq.resize(total_samples, 0);
|
||||
MS_LOG(INFO) << "Resetting sampler";
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
db->PopRow(&row);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
|
||||
for (const auto &t : row) {
|
||||
for (auto it = t->begin<uint64_t>(); it != t->end<uint64_t>(); it++) {
|
||||
out.push_back(*it);
|
||||
|
@ -282,6 +276,6 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&db), Status::OK());
|
||||
ASSERT_EQ(db->eoe(), true);
|
||||
ASSERT_EQ(m_sampler.GetNextSample(&row), Status::OK());
|
||||
ASSERT_EQ(row.eoe(), true);
|
||||
}
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "common/common.h"
|
||||
#include "utils/ms_utils.h"
|
||||
#include "minddata/dataset/engine/data_buffer.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "minddata/dataset/core/global_context.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
|
|
@ -760,11 +760,11 @@ def test_cache_map_parameter_check():
|
|||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id="1", size=0)
|
||||
assert "Argument session_id with value 1 is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument session_id with value 1 is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=None, size=0)
|
||||
assert "Argument session_id with value None is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument session_id with value None is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(ValueError) as info:
|
||||
ds.DatasetCache(session_id=1, size=-1)
|
||||
|
@ -772,19 +772,19 @@ def test_cache_map_parameter_check():
|
|||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=1, size="1")
|
||||
assert "Argument size with value 1 is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument size with value 1 is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=1, size=None)
|
||||
assert "Argument size with value None is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument size with value None is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=1, size=0, spilling="illegal")
|
||||
assert "Argument spilling with value illegal is not of type (<class 'bool'>,)" in str(info.value)
|
||||
assert "Argument spilling with value illegal is not of type [<class 'bool'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(TypeError) as err:
|
||||
ds.DatasetCache(session_id=1, size=0, hostname=50052)
|
||||
assert "Argument hostname with value 50052 is not of type (<class 'str'>,)" in str(err.value)
|
||||
assert "Argument hostname with value 50052 is not of type [<class 'str'>]" in str(err.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as err:
|
||||
ds.DatasetCache(session_id=1, size=0, hostname="illegal")
|
||||
|
@ -796,11 +796,11 @@ def test_cache_map_parameter_check():
|
|||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=1, size=0, port="illegal")
|
||||
assert "Argument port with value illegal is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument port with value illegal is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(TypeError) as info:
|
||||
ds.DatasetCache(session_id=1, size=0, port="50052")
|
||||
assert "Argument port with value 50052 is not of type (<class 'int'>,)" in str(info.value)
|
||||
assert "Argument port with value 50052 is not of type [<class 'int'>]" in str(info.value)
|
||||
|
||||
with pytest.raises(ValueError) as err:
|
||||
ds.DatasetCache(session_id=1, size=0, port=0)
|
||||
|
|
Loading…
Reference in New Issue