forked from mindspore-Ecosystem/mindspore
fix doc string
This commit is contained in:
parent
150be5324f
commit
8279fc0edf
|
@ -218,9 +218,9 @@ def cho_factor(a, lower=False, overwrite_a=False, check_finite=True):
|
|||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns:
|
||||
- Tensor, Matrix whose upper or lower triangle contains the Cholesky factor of `a`.
|
||||
- Tensor, matrix whose upper or lower triangle contains the Cholesky factor of `a`.
|
||||
Other parts of the matrix contain random data.
|
||||
- bool, Flag indicating whether the factor is in the lower or upper triangle
|
||||
- bool, flag indicating whether the factor is in the lower or upper triangle
|
||||
|
||||
Raises:
|
||||
LinAlgError: Raised if decomposition fails.
|
||||
|
@ -263,7 +263,7 @@ def cholesky(a, lower=False, overwrite_a=False, check_finite=True):
|
|||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns:
|
||||
Tensor, Upper- or lower-triangular Cholesky factor of `a`.
|
||||
Tensor, upper- or lower-triangular Cholesky factor of `a`.
|
||||
|
||||
Raises:
|
||||
LinAlgError: if decomposition fails.
|
||||
|
@ -367,7 +367,7 @@ def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
|
|||
and eigenvectors are returned. Default: None.
|
||||
|
||||
Returns:
|
||||
- Tensor with shape :math:`(N,)`, The :math:`N (1<=N<=M)` selected eigenvalues, in ascending order,
|
||||
- Tensor with shape :math:`(N,)`, the :math:`N (1<=N<=M)` selected eigenvalues, in ascending order,
|
||||
each repeated according to its multiplicity.
|
||||
|
||||
- Tensor with shape :math:`(M, N)`, (if ``eigvals_only == False``)
|
||||
|
@ -465,11 +465,12 @@ def lu_factor(a, overwrite_a=False, check_finite=True):
|
|||
.. math::
|
||||
A = P L U
|
||||
|
||||
where P is a permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.
|
||||
where :math:`P` is a permutation matrix, :math:`L` lower triangular with unit diagonal elements,
|
||||
and :math:`U` upper triangular.
|
||||
|
||||
Args:
|
||||
a (Tensor): square matrix of :math:`(M, M)` to decompose.
|
||||
overwrite_a (bool, optional): Whether to overwrite data in `A` (may increase performance). Default: False.
|
||||
overwrite_a (bool, optional): Whether to overwrite data in :math:`A` (may increase performance). Default: False.
|
||||
check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True.
|
||||
|
@ -518,13 +519,13 @@ def lu(a, permute_l=False, overwrite_a=False, check_finite=True):
|
|||
.. math::
|
||||
A = P L U
|
||||
|
||||
where P is a permutation matrix, L lower triangular with unit
|
||||
diagonal elements, and U upper triangular.
|
||||
where :math:`P` is a permutation matrix, :math:`L` lower triangular with unit
|
||||
diagonal elements, and :math:`U` upper triangular.
|
||||
|
||||
Args:
|
||||
a (Tensor): a :math:`(M, N)` matrix to decompose.
|
||||
permute_l (bool, optional): Perform the multiplication :math:`P L` (Default: do not permute). Default: False.
|
||||
overwrite_a (bool, optional): Whether to overwrite data in a (may improve performance). Default: False.
|
||||
overwrite_a (bool, optional): Whether to overwrite data in :math:`A` (may improve performance). Default: False.
|
||||
check_finite (bool, optional): Whether to check that the input matrix contains
|
||||
only finite numbers. Disabling may give a performance gain, but may result
|
||||
in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True.
|
||||
|
@ -603,7 +604,7 @@ def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True):
|
|||
if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns:
|
||||
Tesnor, Solution to the system
|
||||
Tesnor, solution to the system
|
||||
|
||||
Supported Platforms:
|
||||
``CPU`` ``GPU``
|
||||
|
|
|
@ -22,34 +22,37 @@ from ..ops import functional as F
|
|||
|
||||
class SolveTriangular(PrimitiveWithInfer):
|
||||
"""
|
||||
SolveTriangular op frontend implementation.
|
||||
Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.
|
||||
|
||||
Args:
|
||||
lower (bool): The input Matrix :math:`A` is lower triangular matrix or not.
|
||||
unit_diagonal (bool): If True, diagonal elements of :math:`A` are assumed to be 1 and
|
||||
will not be referenced.
|
||||
A (Tensor): A triangular matrix of shape :math:`(N, N)`.
|
||||
b (Tensor): A Tensor of shape :math:`(M,)` or :math:`(M, N)`.
|
||||
Right-hand side matrix in :math:`A x = b`.
|
||||
lower (bool, optional): Use only data contained in the lower triangle of `a`.
|
||||
Default is to use upper triangle.
|
||||
trans (0, 1, 2, 'N', 'T', 'C', optional):
|
||||
Type of system to solve:
|
||||
|
||||
======== =========
|
||||
trans system
|
||||
======== =========
|
||||
0 or 'N' a x = b
|
||||
1 or 'T' a^T x = b
|
||||
2 or 'C' a^H x = b
|
||||
======== =========
|
||||
|
||||
Inputs:
|
||||
- **A** (Tensor) - A triangular matrix of shape :math:`(N, N)`.
|
||||
- **b** (Tensor) - A Tensor of shape :math:`(M,)` or :math:`(M, N)`. Right-hand side matrix in :math:`A x = b`.
|
||||
trans: system:
|
||||
0 or 'N' a x = b
|
||||
1 or 'T' a^T x = b
|
||||
2 or 'C' a^H x = b
|
||||
unit_diagonal (bool, optional): If True, diagonal elements of :math:`A` are assumed to be 1 and
|
||||
will not be referenced.
|
||||
overwrite_b (bool, optional): Allow overwriting data in :math:`b` (may enhance performance)
|
||||
check_finite (bool, optional): Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
|
||||
Returns:
|
||||
- **x** (Tensor) - A Tensor of shape :math:`(M,)` or :math:`(M, N)`,
|
||||
which is the solution to the system :math:`A x = b`.
|
||||
Shape of :math:`x` matches :math:`b`.
|
||||
Tensor of shape :math:`(M,)` or :math:`(M, N)`,
|
||||
which is the solution to the system :math:`A x = b`.
|
||||
Shape of :math:`x` matches :math:`b`.
|
||||
|
||||
Raises:
|
||||
LinAlgError: If :math:`A` is singular
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
``CPU`` ``GPU``
|
||||
|
||||
Examples:
|
||||
Solve the lower triangular system :math:`A x = b`, where:
|
||||
|
|
Loading…
Reference in New Issue