forked from mindspore-Ecosystem/mindspore
!4130 modify some bug and add test case for gpu dropout op
Merge pull request !4130 from hanhuifeng/gpu_dropout
This commit is contained in:
commit
8040e8bf89
|
@ -54,12 +54,18 @@ class DropoutGpuFwdKernel : public GpuKernel {
|
|||
float *mask_f = GetDeviceAddress<float>(workspace, 0);
|
||||
|
||||
if (!states_init_) {
|
||||
curandCreateGenerator(&mask_generator_, CURAND_RNG_PSEUDO_DEFAULT);
|
||||
curandSetPseudoRandomGeneratorSeed(mask_generator_, time(NULL));
|
||||
CHECK_CURAND_RET_WITH_EXCEPT(curandCreateGenerator(&mask_generator_, CURAND_RNG_PSEUDO_DEFAULT),
|
||||
"Failed to create generator");
|
||||
CHECK_CURAND_RET_WITH_EXCEPT(curandSetPseudoRandomGeneratorSeed(mask_generator_, time(NULL)),
|
||||
"Failed to SetPseudoRandomGeneratorSeed");
|
||||
MS_EXCEPTION_IF_NULL(mask_generator_);
|
||||
states_init_ = true;
|
||||
}
|
||||
CHECK_CURAND_RET_WITH_EXCEPT(curandSetStream(mask_generator_, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"Failed to set stream for generator");
|
||||
// curandGen only support float or double for mask.
|
||||
curandGenerateUniform(mask_generator_, mask_f, num_count_);
|
||||
CHECK_CURAND_RET_WITH_EXCEPT(curandGenerateUniform(mask_generator_, mask_f, num_count_),
|
||||
"Failed to generate uniform");
|
||||
DropoutForward(input, mask, output, mask_f, num_count_, keep_prob_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
|
||||
return true;
|
||||
|
|
|
@ -20,7 +20,9 @@
|
|||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include "utils/log_adapter.h"
|
||||
#include "include/curand.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
|
@ -131,6 +133,15 @@ inline bool CheckNullInput(std::vector<size_t> input_shape) {
|
|||
return false;
|
||||
}
|
||||
#define CHECK_NULL_INPUT(input_shape) mindspore::device::gpu::CheckNullInput(input_shape)
|
||||
|
||||
#define CHECK_CURAND_RET_WITH_EXCEPT(expression, message) \
|
||||
{ \
|
||||
curandStatus_t status = (expression); \
|
||||
if (status != CURAND_STATUS_SUCCESS) { \
|
||||
MS_LOG(EXCEPTION) << "CUAD curand Error: " << message << " | curandStatus: " << status; \
|
||||
} \
|
||||
}
|
||||
|
||||
} // namespace gpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_prob):
|
||||
super(Net, self).__init__()
|
||||
self.drop = P.Dropout(keep_prob)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.drop(x_)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dropout():
|
||||
x_shape = [32, 16, 2, 5]
|
||||
x = np.ones(x_shape).astype(np.float32)
|
||||
keep_prob = 0.4
|
||||
dropout = Net(keep_prob)
|
||||
tx = Tensor(x)
|
||||
output, mask = dropout(tx)
|
||||
# check output
|
||||
output_np = output.asnumpy()
|
||||
elem_count = x.size
|
||||
nonzero_count = np.count_nonzero(output_np)
|
||||
assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
|
||||
output_sum = np.sum(output_np)
|
||||
x_sum = np.sum(x)
|
||||
assert abs(output_sum - x_sum)/x_sum < 0.1
|
||||
# check mask
|
||||
mask_np = mask.asnumpy()
|
||||
mask_sum = np.sum(mask_np)
|
||||
assert np.count_nonzero(mask_np) == nonzero_count
|
||||
assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1
|
Loading…
Reference in New Issue