add lenet & alexnet in master branch

This commit is contained in:
wukesong 2020-03-28 18:26:56 +08:00 committed by chang zherui
parent 2c751b75b5
commit 7f6cb98779
11 changed files with 461 additions and 130 deletions

View File

@ -0,0 +1,32 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py
"""
from easydict import EasyDict as edict
alexnet_cfg = edict({
'num_classes': 10,
'learning_rate': 0.002,
'momentum': 0.9,
'epoch_size': 1,
'batch_size': 32,
'buffer_size': 1000,
'image_height': 227,
'image_width': 227,
'save_checkpoint_steps': 1562,
'keep_checkpoint_max': 10,
})

View File

@ -0,0 +1,54 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Produce the dataset
"""
from config import alexnet_cfg as cfg
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.common import dtype as mstype
def create_dataset(data_path, batch_size=32, repeat_size=1, status="train"):
"""
create dataset for train or test
"""
cifar_ds = ds.Cifar10Dataset(data_path)
rescale = 1.0 / 255.0
shift = 0.0
resize_op = CV.Resize((cfg.image_height, cfg.image_width))
rescale_op = CV.Rescale(rescale, shift)
normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
if status == "train":
random_crop_op = CV.RandomCrop([32, 32], [4, 4, 4, 4])
random_horizontal_op = CV.RandomHorizontalFlip()
channel_swap_op = CV.HWC2CHW()
typecast_op = C.TypeCast(mstype.int32)
cifar_ds = cifar_ds.map(input_columns="label", operations=typecast_op)
if status == "train":
cifar_ds = cifar_ds.map(input_columns="image", operations=random_crop_op)
cifar_ds = cifar_ds.map(input_columns="image", operations=random_horizontal_op)
cifar_ds = cifar_ds.map(input_columns="image", operations=resize_op)
cifar_ds = cifar_ds.map(input_columns="image", operations=rescale_op)
cifar_ds = cifar_ds.map(input_columns="image", operations=normalize_op)
cifar_ds = cifar_ds.map(input_columns="image", operations=channel_swap_op)
cifar_ds = cifar_ds.shuffle(buffer_size=cfg.buffer_size)
cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True)
cifar_ds = cifar_ds.repeat(repeat_size)
return cifar_ds

View File

@ -0,0 +1,58 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## eval alexnet example ########################
eval alexnet according to model file:
python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
"""
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset
import mindspore.nn as nn
from mindspore import context
from mindspore.model_zoo.alexnet import AlexNet
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore AlexNet Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
path where the trained ckpt file')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
network = AlexNet(cfg.num_classes)
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
repeat_size = cfg.epoch_size
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test
print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
ds_eval = create_dataset(args.data_path,
cfg.batch_size,
1,
"test")
acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode)
print("============== Accuracy:{} ==============".format(acc))

View File

@ -0,0 +1,58 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## train alexnet example ########################
train alexnet and get network model files(.ckpt) :
python train.py --data_path /YourDataPath
"""
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset
import mindspore.nn as nn
from mindspore import context
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.model_zoo.alexnet import AlexNet
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore AlexNet Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
path where the trained ckpt file')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
network = AlexNet(cfg.num_classes)
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test
print("============== Starting Training ==============")
ds_train = create_dataset(args.data_path,
cfg.batch_size,
cfg.epoch_size,
"train")
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck)
model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()],
dataset_sink_mode=args.dataset_sink_mode)

View File

@ -1,125 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## train and test lenet example ########################
1. train lenet and get network model files(.ckpt) :
python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
2. test lenet according to model file:
python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
--mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt
"""
import os
import argparse
from config import mnist_cfg as cfg
import mindspore.dataengine as de
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train import Model
import mindspore.ops.operations as P
import mindspore.transforms.c_transforms as C
from mindspore.transforms import Inter
from mindspore.nn.metrics import Accuracy
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
class CrossEntropyLoss(nn.Cell):
"""
Define loss for network
"""
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean()
self.one_hot = P.OneHot()
self.on_value = Tensor(1.0, mstype.float32)
self.off_value = Tensor(0.0, mstype.float32)
def construct(self, logits, label):
label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
loss = self.cross_entropy(logits, label)[0]
loss = self.mean(loss, (-1,))
return loss
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
ds1 = de.MnistDataset(data_path)
# apply map operations on images
ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32))
ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width),
interpolation=Inter.LINEAR),
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081),
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0),
num_parallel_workers=num_parallel_workers)
ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers)
# apply DatasetOps
ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script
ds1 = ds1.batch(batch_size, drop_remainder=True)
ds1 = ds1.repeat(repeat_size)
return ds1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'],
help='implement phase, set to train or test')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
path where the trained ckpt file')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
network = LeNet5(cfg.num_classes)
network.set_train()
# net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon
net_loss = CrossEntropyLoss()
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
if args.mode == 'train': # train
ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size,
repeat_size=cfg.epoch_size)
print("============== Starting Training ==============")
model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
elif args.mode == 'test': # test
print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1)
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("============== Accuracy:{} ==============".format(acc))
else:
raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))

View File

@ -13,8 +13,9 @@
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in main.py
network config setting, will be used in train.py
"""
from easydict import EasyDict as edict
mnist_cfg = edict({
@ -23,7 +24,6 @@ mnist_cfg = edict({
'momentum': 0.9,
'epoch_size': 1,
'batch_size': 32,
'repeat_size': 1,
'buffer_size': 1000,
'image_height': 32,
'image_width': 32,

View File

@ -0,0 +1,60 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Produce the dataset
"""
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
from mindspore.common import dtype as mstype
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds

View File

@ -0,0 +1,64 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## eval lenet example ########################
eval lenet according to model file:
python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
"""
import os
import argparse
from dataset import create_dataset
from config import mnist_cfg as cfg
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
help='path where the dataset is saved')
parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
path where the trained ckpt file')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
repeat_size = cfg.epoch_size
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
ds_eval = create_dataset(os.path.join(args.data_path, "test"),
cfg.batch_size,
1)
acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode)
print("============== Accuracy:{} ==============".format(acc))

View File

@ -0,0 +1,58 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## train lenet example ########################
train lenet and get network model files(.ckpt) :
python train.py --data_path /YourDataPath
"""
import os
import argparse
from config import mnist_cfg as cfg
from dataset import create_dataset
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
help='path where the dataset is saved')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False)
network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
ds_train = create_dataset(os.path.join(args.data_path, "train"),
cfg.batch_size,
cfg.epoch_size)
print("============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor()],
dataset_sink_mode=args.dataset_sink_mode)

View File

@ -0,0 +1,73 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Alexnet."""
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"):
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode=pad_mode)
def fc_with_initialize(input_channels, out_channels):
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
return TruncatedNormal(0.02) # 0.02
class AlexNet(nn.Cell):
"""
Alexnet
"""
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.batch_size = 32
self.conv1 = conv(3, 96, 11, stride=4)
self.conv2 = conv(96, 256, 5, pad_mode="same")
self.conv3 = conv(256, 384, 3, pad_mode="same")
self.conv4 = conv(384, 384, 3, pad_mode="same")
self.conv5 = conv(384, 256, 3, pad_mode="same")
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
self.flatten = nn.Flatten()
self.fc1 = fc_with_initialize(6*6*256, 4096)
self.fc2 = fc_with_initialize(4096, 4096)
self.fc3 = fc_with_initialize(4096, num_classes)
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
"""LeNet."""
import mindspore.ops.operations as P
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
@ -62,7 +61,7 @@ class LeNet5(nn.Cell):
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.reshape = P.Reshape()
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
@ -71,7 +70,7 @@ class LeNet5(nn.Cell):
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.reshape(x, (self.batch_size, -1))
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)