forked from mindspore-Ecosystem/mindspore
!311 GPU add akg kernel select
Merge pull request !311 from VectorSL/select
This commit is contained in:
commit
7d7c9c4fee
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/arrays/select_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Select,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SelectGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Select,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SelectGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(Select,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SelectGpuKernel, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,95 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/select_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class SelectGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SelectGpuKernel() : input_size_(0), output_size_(0) {}
|
||||
~SelectGpuKernel() override = default;
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
bool *input_cond = GetDeviceAddress<bool>(inputs, 0);
|
||||
T *input_x = GetDeviceAddress<T>(inputs, 1);
|
||||
T *input_y = GetDeviceAddress<T>(inputs, 2);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CalSelect(output_size_ / sizeof(T), input_cond, input_x, input_y, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
if (!CheckParam(kernel_node)) {
|
||||
return false;
|
||||
}
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = sizeof(bool);
|
||||
output_size_ = sizeof(T);
|
||||
for (size_t x : shape) {
|
||||
input_size_ = input_size_ * x;
|
||||
output_size_ = output_size_ * x;
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(output_size_);
|
||||
input_size_list_.push_back(output_size_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but SelectGpuKernel needs 3 output.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but SelectGpuKernel needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <include/cuda_runtime.h>
|
||||
#include "kernel/gpu/cuda_impl/select_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__global__ void Select(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
output[pos] = cond[pos] ? input_x[pos] : input_y[pos];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output,
|
||||
cudaStream_t cuda_stream) {
|
||||
Select<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, cond, input_x, input_y, output);
|
||||
return;
|
||||
}
|
||||
|
||||
template void CalSelect<float>(const size_t size, const bool* cond, const float* input_X, const float* input_y,
|
||||
float* output, cudaStream_t cuda_stream);
|
||||
template void CalSelect<int>(const size_t size, const bool* cond, const int* input_X, const int* input_y, int* output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalSelect<half>(const size_t size, const bool* cond, const half* input_X, const half* input_y,
|
||||
half* output, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,25 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output,
|
||||
cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.select = P.Select()
|
||||
|
||||
def construct(self, cond, x, y):
|
||||
return self.select(cond, x, y)
|
||||
|
||||
cond = np.array([[True, False], [True, False]]).astype(np.bool)
|
||||
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
|
||||
y = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_select():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
select = Net()
|
||||
output = select(Tensor(cond), Tensor(x), Tensor(y))
|
||||
expect = [[1.2, 2], [1, 4.0]]
|
||||
error = np.ones(shape=[2, 2]) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
Loading…
Reference in New Issue