forked from mindspore-Ecosystem/mindspore
googlenet-gpu
This commit is contained in:
parent
d4b5cda934
commit
7d5a67e9f0
|
@ -16,6 +16,8 @@
|
|||
##############test googlenet example on cifar10#################
|
||||
python eval.py
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
|
@ -26,18 +28,27 @@ from src.config import cifar_cfg as cfg
|
|||
from src.dataset import create_dataset
|
||||
from src.googlenet import GoogleNet
|
||||
|
||||
parser = argparse.ArgumentParser(description='googlenet')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if __name__ == '__main__':
|
||||
device_target = cfg.device_target
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
|
||||
context.set_context(device_id=cfg.device_id)
|
||||
if device_target == "Ascend":
|
||||
context.set_context(device_id=cfg.device_id)
|
||||
|
||||
net = GoogleNet(num_classes=cfg.num_classes)
|
||||
net = GoogleNet(num_classes=cfg.num_classes, platform=device_target)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
param_dict = load_checkpoint(cfg.checkpoint_path)
|
||||
if device_target == "Ascend":
|
||||
param_dict = load_checkpoint(cfg.checkpoint_path)
|
||||
else: # GPU
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
dataset = create_dataset(cfg.data_path, 1, False)
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
ulimit -u unlimited
|
||||
|
||||
if [ $# != 1 ]
|
||||
then
|
||||
echo "GPU: sh run_eval_gpu.sh [CHECKPOINT_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# check checkpoint file
|
||||
if [ ! -f $1 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_PATH=$1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
|
||||
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
|
||||
export DEVICE_ID=0
|
||||
|
||||
if [ -d "../eval" ];
|
||||
then
|
||||
rm -rf ../eval
|
||||
fi
|
||||
mkdir ../eval
|
||||
cd ../eval || exit
|
||||
|
||||
python3 ${BASEPATH}/../eval.py --checkpoint_path=$1 > ./eval.log 2>&1 &
|
|
@ -0,0 +1,45 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# -lt 2 ]
|
||||
then
|
||||
echo "Usage:\n \
|
||||
sh run_train.sh [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)]\n \
|
||||
"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 -lt 1 ] && [ $1 -gt 8 ]
|
||||
then
|
||||
echo "error: DEVICE_NUM=$1 is not in (1-8)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export DEVICE_NUM=$1
|
||||
export RANK_SIZE=$1
|
||||
|
||||
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
|
||||
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
|
||||
if [ -d "../train" ];
|
||||
then
|
||||
rm -rf ../train
|
||||
fi
|
||||
mkdir ../train
|
||||
cd ../train || exit
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="$2"
|
||||
mpirun -n $1 --allow-run-as-root \
|
||||
python3 ${BASEPATH}/../train.py > train.log 2>&1 &
|
|
@ -56,24 +56,35 @@ class Inception(nn.Cell):
|
|||
Inception Block
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes, platform="Ascend"):
|
||||
super(Inception, self).__init__()
|
||||
self.platform = platform
|
||||
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
|
||||
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
|
||||
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
|
||||
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
|
||||
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
||||
if self.platform == "Ascend":
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
||||
else: # GPU
|
||||
self.maxpool = P.MaxPool(ksize=3, strides=1, padding="same")
|
||||
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
|
||||
self.concat = P.Concat(axis=1)
|
||||
|
||||
def construct(self, x):
|
||||
'''
|
||||
construct inception model
|
||||
'''
|
||||
branch1 = self.b1(x)
|
||||
branch2 = self.b2(x)
|
||||
branch3 = self.b3(x)
|
||||
cell, argmax = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
_ = argmax
|
||||
if self.platform == "Ascend":
|
||||
cell, argmax = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
_ = argmax
|
||||
else: # GPU
|
||||
cell = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
return self.concat((branch1, branch2, branch3, branch4))
|
||||
|
||||
|
||||
|
@ -82,61 +93,82 @@ class GoogleNet(nn.Cell):
|
|||
Googlenet architecture
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes):
|
||||
def __init__(self, num_classes, platform="Ascend"):
|
||||
super(GoogleNet, self).__init__()
|
||||
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
|
||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.platform = platform
|
||||
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
|
||||
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
|
||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
|
||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
|
||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
|
||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
|
||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
|
||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
|
||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
|
||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
||||
|
||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
|
||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
|
||||
|
||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32, platform=self.platform)
|
||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64, platform=self.platform)
|
||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64, platform=self.platform)
|
||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64, platform=self.platform)
|
||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64, platform=self.platform)
|
||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64, platform=self.platform)
|
||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128, platform=self.platform)
|
||||
if self.platform == "Ascend":
|
||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
||||
else: # GPU
|
||||
self.maxpool1 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool2 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool3 = P.MaxPool(ksize=3, strides=2, padding="same")
|
||||
self.maxpool4 = P.MaxPool(ksize=2, strides=2, padding="same")
|
||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128, platform=self.platform)
|
||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128, platform=self.platform)
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.dropout = nn.Dropout(keep_prob=0.8)
|
||||
self.flatten = nn.Flatten()
|
||||
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
|
||||
bias_init=weight_variable())
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
'''
|
||||
construct googlenet model
|
||||
'''
|
||||
x = self.conv1(x)
|
||||
x, argmax = self.maxpool1(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool1(x)
|
||||
else: # GPU
|
||||
x = self.maxpool1(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x, argmax = self.maxpool2(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool2(x)
|
||||
else: # GPU
|
||||
x = self.maxpool2(x)
|
||||
|
||||
x = self.block3a(x)
|
||||
x = self.block3b(x)
|
||||
x, argmax = self.maxpool3(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool3(x)
|
||||
else: # GPU
|
||||
x = self.maxpool3(x)
|
||||
|
||||
x = self.block4a(x)
|
||||
x = self.block4b(x)
|
||||
x = self.block4c(x)
|
||||
x = self.block4d(x)
|
||||
x = self.block4e(x)
|
||||
x, argmax = self.maxpool4(x)
|
||||
if self.platform == "Ascend":
|
||||
x, argmax = self.maxpool4(x)
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
_ = argmax
|
||||
else: # GPU
|
||||
x = self.maxpool4(x)
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
|
||||
_ = argmax
|
||||
return x
|
||||
|
|
|
@ -25,7 +25,7 @@ import numpy as np
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.communication.management import init, get_rank
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
|
@ -38,7 +38,6 @@ from src.googlenet import GoogleNet
|
|||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
||||
|
||||
def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
|
||||
"""Set learning rate."""
|
||||
lr_each_step = []
|
||||
|
@ -65,23 +64,36 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
|
||||
if args_opt.device_id is not None:
|
||||
context.set_context(device_id=args_opt.device_id)
|
||||
else:
|
||||
context.set_context(device_id=cfg.device_id)
|
||||
device_target = cfg.device_target
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
|
||||
device_num = int(os.environ.get("DEVICE_NUM", 1))
|
||||
if device_num > 1:
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True)
|
||||
init()
|
||||
|
||||
if device_target == "Ascend":
|
||||
if args_opt.device_id is not None:
|
||||
context.set_context(device_id=args_opt.device_id)
|
||||
else:
|
||||
context.set_context(device_id=cfg.device_id)
|
||||
|
||||
if device_num > 1:
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True)
|
||||
init()
|
||||
elif device_target == "GPU":
|
||||
init("nccl")
|
||||
|
||||
if device_num > 1:
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True)
|
||||
else:
|
||||
raise ValueError("Unsupport platform.")
|
||||
|
||||
dataset = create_dataset(cfg.data_path, 1)
|
||||
batch_num = dataset.get_dataset_size()
|
||||
|
||||
net = GoogleNet(num_classes=cfg.num_classes)
|
||||
net = GoogleNet(num_classes=cfg.num_classes, platform=device_target)
|
||||
# Continue training if set pre_trained to be True
|
||||
if cfg.pre_trained:
|
||||
param_dict = load_checkpoint(cfg.checkpoint_path)
|
||||
|
@ -90,12 +102,19 @@ if __name__ == '__main__':
|
|||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
|
||||
|
||||
if device_target == "Ascend":
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
|
||||
ckpt_save_dir = "./"
|
||||
else: # GPU
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=True, loss_scale_manager=None)
|
||||
ckpt_save_dir = "./ckpt_" + str(get_rank()) + "/"
|
||||
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
time_cb = TimeMonitor(data_size=batch_num)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory="./", config=config_ck)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory=ckpt_save_dir, config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
|
||||
print("train success")
|
||||
|
|
Loading…
Reference in New Issue